829 research outputs found
Ferromagnetic (Ga,Mn)N epilayers versus antiferromagnetic GaMnN clusters
Mn-doped wurtzite GaN epilayers have been grown by nitrogen plasma-assisted
molecular beam epitaxy. Correlated SIMS, structural and magnetic measurements
show that the incorporation of Mn strongly depends on the conditions of the
growth. Hysteresis loops which persist at high temperature do not appear to be
correlated to the presence of Mn. Samples with up to 2% Mn are purely
substitutional GaMnN epilayers, and exhibit paramagnetic
properties. At higher Mn contents, precipitates are formed which are identified
as GaMnN clusters by x-ray diffraction and absorption: this induces a
decrease of the paramagnetic magnetisation. Samples co-doped with enough Mg
exhibit a new feature: a ferromagnetic component is observed up to
K, which cannot be related to superparamagnetism of unresolved magnetic
precipitates.Comment: Revised versio
Insertion of CdSe quantumdots in ZnSe nanowires : MBE growth and microstructure analysis
ZnSe nanowire growth has been successfully achieved on ZnSe (100) and (111)B
buffer layers deposited on GaAs substrates. Cubic [100] oriented ZnSe nanowires
or [0001] oriented hexagonal NWs are obtained on (100) substrates while [111]
oriented cubic mixed with [0001] oriented hexagonal regions are obtained on
(111)B substrates. Most of the NWs are perpendicular to the surface in the last
case. CdSe quantum dots were successfully incorporated in the ZnSe NWs as
demonstrated by transmission electron microscopy, energy filtered TEM and high
angle annular dark field scanning TEM measurements
Polarity determination in ZnSe nanowires by HAADF STEM
High angle annular dark field scanning transmission electron microscopy is
used to analyze the polarity of ZnSe nanowires grown, by molecular beam
epitaxy, on GaAs substrates. The experimental results are compared to simulated
images in order to verify possible experimental artefacts. In this work we show
that for this type of nano-objects, a residual tilt of the specimen below 15
mrad, away from the crystallographic zone axis does not impair the
interpretation of the experimental images
A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila
Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol
Comprehensive analysis of local and nonlocal amplitudes in the B 0 → K *0 μ + μ − decay
A comprehensive study of the local and nonlocal amplitudes contributing to the decay B0 → K*0(→ K+π−)μ+μ− is performed by analysing the phase-space distribution of the decay products. The analysis is based on pp collision data corresponding to an integrated luminosity of 8.4 fb−1 collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient C9, responsible for vector dimuon currents, exhibits a 2.1σ deviation from the Standard Model expectation. The Wilson Coefficients C10, C9′ and C10′ are all in better agreement than C9 with the Standard Model and the global significance is at the level of 1.5σ. The model used also accounts for nonlocal contributions from B0→ K*0[τ+τ−→ μ+μ−] rescattering, resulting in the first direct measurement of the bsττ vector effective-coupling C9τ
Amplitude analysis and branching fraction measurement of B + → D ∗ − D s + π + decays
The decays of the B+ meson to the final state D∗−Ds+π+ are studied in proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of 9 fb−1. The ratio of branching fractions of the B+→D∗−Ds+π+ and B0→D∗−Ds+ decays is measured to be 0.173 ± 0.006 ± 0.010, where the first uncertainty is statistical and the second is systematic. Using partially reconstructed Ds∗+→Ds+γ and Ds+π0 decays, the ratio of branching fractions between the B+→D∗−Ds∗+π+ and B+→D∗−Ds+π+ decays is determined as 1.31 ± 0.07 ± 0.14. An amplitude analysis of the B+→D∗−Ds+π+ decay is performed for the first time, revealing dominant contributions from known excited charm resonances decaying to the D*−π+ final state. No significant evidence of exotic contributions in the Ds+π+ or D∗−Ds+ channels is found. The fit fraction of the scalar state Tcs¯0∗2900++ observed in the B+→D−Ds+π+ decay is determined to be less than 2.3% at a 90% confidence level
Transverse polarization measurement of Λ hyperons in pNe collisions at s NN = 68. 4 GeV with the LHCb detector
A measurement of the transverse polarization of the Λ and Λ¯ hyperons in pNe fixed-target collisions at sNN = 68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λ → pπ− together with its charge conjugated process, the integrated values measured arePΛ=0.029±0.019stat±0.012syst, PΛ¯=0.003±0.023stat±0.014syst. Furthermore, the results are shown as a function of the Feynman x variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements
Propolis can potentialise the anti-adhesion activity of proanthocyanidins on uropathogenic Escherichia coli in the prevention of recurrent urinary tract infections
<p>Abstract</p> <p>Background</p> <p><it>Escherichia coli</it>, the main bacteria found in recurrent urinary tract infections (UTI), is now frequently resistant to several currently used antibiotic treatments making new solutions essential. In this study, we evaluated the association propolis and proanthocyanidins type A to reduce bacterial anti-adhesion activity of <it>E. coli </it>on urothelial cells.</p> <p>Results</p> <p>This first double-blind, randomized, cross-over human trial included 5 volunteers that followed 6 different regimens with or without variable doses of cranberry and propolis with a washout period of at least 1 week between each regimen. Urine samples were collected at 0 h, 4-6 h, 12 h and 24 h after cranberry plus propolis or placebo capsule consumption. In vivo urinary bacterial anti-adhesion activity was assessed with a bioassay (a human T24 epithelial cell-line assay) and an in vivo <it>Caenorhabditis elegans </it>model. HPLC-PDA-MS was used to detect propolis and cranberry compounds in urine. Bioassays indicated significant bacterial anti-adhesion activity in urine collected from volunteers who had consumed cranberry plus propolis powder compared to placebo (<it>p </it>< 0.001). This inhibition was clearly dose-dependent, increasing with the amount of PACs and propolis equivalents consumed in each regimen. Results suggested that propolis had an additional effect with PACs and prevent a bacterial anti-adhesion effect over 1 day. An in vivo model showed that the <it>E. coli </it>strain presented a reduced ability to kill <it>C. elegans </it>after their growth in urine samples of patients who took cranberry plus propolis capsules. HPLC confirmed that propolis is excreted in urine.</p> <p>Conclusions</p> <p>This study presents an alternative to prevent recurrent UTI. Administration of PACs plus propolis once daily offers some protection against bacterial adhesion, bacterial multiplication and virulence in the urinary tract, representing an interesting new strategy to prevent recurrent UTI.</p
- …