4,878 research outputs found

    Experimental test for interpreting the increase in sensibility of doped CR-39

    Get PDF
    In recent years the sensibility of CR-39 to nuclear tracks has been increased by doping the corresponding monomer with dioctyl phtalate. At this regard, two theoretical approaches are current managed to explain this phenomenon: either the doping react with the active radicals in the chain blocking them, stopping crosslinking between chains, or alternatively that the doping gets between them giving wider space between the crosslinkined chains

    On the robustness of q-expectation values and Renyi entropy

    Full text link
    We study the robustness of functionals of probability distributions such as the R\'enyi and nonadditive S_q entropies, as well as the q-expectation values under small variations of the distributions. We focus on three important types of distribution functions, namely (i) continuous bounded (ii) discrete with finite number of states, and (iii) discrete with infinite number of states. The physical concept of robustness is contrasted with the mathematically stronger condition of stability and Lesche-stability for functionals. We explicitly demonstrate that, in the case of continuous distributions, once unbounded distributions and those leading to negative entropy are excluded, both Renyi and nonadditive S_q entropies as well as the q-expectation values are robust. For the discrete finite case, the Renyi and nonadditive S_q entropies and the q-expectation values are robust. For the infinite discrete case, where both Renyi entropy and q-expectations are known to violate Lesche-stability and stability respectively, we show that one can nevertheless state conditions which guarantee physical robustness.Comment: 6 pages, to appear in Euro Phys Let

    Hard Thermal Loops and Chiral Lagrangians

    Get PDF
    Chiral symmetry is used as the guiding principle to derive hard thermal loop effects in chiral perturbation theory. This is done by using a chiral invariant background field method for the non-linear sigma model and the Wess-Zumino-Witten lagrangian, with and without external vector and axial vector sources. It is then shown that the n-point hard thermal loop is the leading thermal correction for the Green function of n point vector soft quark currents.Comment: 15 pages, Revtex, references added, typos corrected, final version to appear in Phys. Rev.

    Dimensional Reduction and Quantum-to-Classical Reduction at High Temperatures

    Full text link
    We discuss the relation between dimensional reduction in quantum field theories at finite temperature and a familiar quantum mechanical phenomenon that quantum effects become negligible at high temperatures. Fermi and Bose fields are compared in this respect. We show that decoupling of fermions from the dimensionally reduced theory can be related to the non-existence of classical statistics for a Fermi field.Comment: 11 pages, REVTeX, revised v. to be published in Phys. Rev. D: some points made more explici

    Escort mean values and the characterization of power-law-decaying probability densities

    Get PDF
    Escort mean values (or qq-moments) constitute useful theoretical tools for describing basic features of some probability densities such as those which asymptotically decay like {\it power laws}. They naturally appear in the study of many complex dynamical systems, particularly those obeying nonextensive statistical mechanics, a current generalization of the Boltzmann-Gibbs theory. They recover standard mean values (or moments) for q=1q=1. Here we discuss the characterization of a (non-negative) probability density by a suitable set of all its escort mean values together with the set of all associated normalizing quantities, provided that all of them converge. This opens the door to a natural extension of the well known characterization, for the q=1q=1 instance, of a distribution in terms of the standard moments, provided that {\it all} of them have {\it finite} values. This question would be specially relevant in connection with probability densities having {\it divergent} values for all nonvanishing standard moments higher than a given one (e.g., probability densities asymptotically decaying as power-laws), for which the standard approach is not applicable. The Cauchy-Lorentz distribution, whose second and higher even order moments diverge, constitutes a simple illustration of the interest of this investigation. In this context, we also address some mathematical subtleties with the aim of clarifying some aspects of an interesting non-linear generalization of the Fourier Transform, namely, the so-called qq-Fourier Transform.Comment: 20 pages (2 Appendices have been added

    On fermionic tilde conjugation rules and thermal bosonization. Hot and cold thermofields

    Full text link
    A generalization of Ojima tilde conjugation rules is suggested, which reveals the coherent state properties of thermal vacuum state and is useful for the thermofield bosonization. The notion of hot and cold thermofields is introduced to distinguish different thermofield representations giving the correct normal form of thermofield solution for finite temperature Thirring model with correct renormalization and anticommutation properties.Comment: 13 page

    Induced Parity-Breaking Term at Finite Chemical Potential and Temparature

    Full text link
    We exactly calculated the parity-odd term of the effective action induced by the fermions in 2+1 dimensions at finite chemical potential and finite temperature. It shows that gauge invariance is still respected. A more gerneral class of background configurations is considered. The knowledge of the reduced 1+1 determinant is required in order to draw exact conclusions about the gauge invariance of the parity-odd term in this latter case.Comment: 8 pages, LATEX, no figure

    Linearly scaling direct method for accurately inverting sparse banded matrices

    Get PDF
    In many problems in Computational Physics and Chemistry, one finds a special kind of sparse matrices, termed "banded matrices". These matrices, which are defined as having non-zero entries only within a given distance from the main diagonal, need often to be inverted in order to solve the associated linear system of equations. In this work, we introduce a new O(n) algorithm for solving such a system, being n X n the size of the matrix. We produce the analytical recursive expressions that allow to directly obtain the solution, as well as the pseudocode for its computer implementation. Moreover, we review the different options for possibly parallelizing the method, we describe the extension to deal with matrices that are banded plus a small number of non-zero entries outside the band, and we use the same ideas to produce a method for obtaining the full inverse matrix. Finally, we show that the New Algorithm is competitive, both in accuracy and in numerical efficiency, when compared to a standard method based in Gaussian elimination. We do this using sets of large random banded matrices, as well as the ones that appear when one tries to solve the 1D Poisson equation by finite differences.Comment: 24 pages, 5 figures, submitted to J. Comp. Phy

    Massless Thirring model in canonical quantization scheme

    Full text link
    It is shown that the exact solvability of the massless Thirring model in the canonical quantization scheme originates from the intrinsic linearizability of its Heisenberg equations in the method of dynamical mappings. The corresponding role of inequivalent representations of free massless Dirac field is elucidated.Comment: 10 page
    • …
    corecore