1,262 research outputs found

    Tropospheric methane retrieved from ground-based near-IR solar absorption spectra

    Get PDF
    High-resolution near-infrared solar absorption spectra recorded between 1977 and 1995 at the Kitt Peak National Solar Observatory are analyzed to retrieve column abundances of methane (CH_4), hydrogen fluoride (HF), and oxygen (O_2). Employing a stratospheric “slope equilibrium” relationship between CH_4 and HF, the varying contribution of stratospheric CH_4 to the total column is inferred. Variations in the CH_4 column due to changes in surface pressure are determined from the O_2 column abundances. By this technique, CH_4 tropospheric volume mixing ratios are determined with a precision of ∼0.5%. These display behavior similar to Mauna Loa in situ surface measurements, with a seasonal peak-to-peak amplitude of approximately 30 ppbv and a nearly linear increase between 1977 and 1983 of 18.0 ± 0.8 ppbv yr^(−1), slowing significantly after 1990

    Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs)

    Get PDF
    Current atmospheric models do not include secondary organic aerosol (SOA) production from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs). Recent studies have shown that primary emissions undergo oxidation in the gas phase, leading to SOA formation. This opens the possibility that low-volatility gas-phase precursors are a potentially large source of SOA. In this work, SOA formation from gas-phase photooxidation of naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2- MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in the Caltech dual 28-m^3 chambers. Under high-NO_x conditions and aerosol mass loadings between 10 and 40μgm^(−3), the SOA yields (mass of SOA per mass of hydrocarbon reacted) ranged from 0.19 to 0.30 for naphthalene, 0.19 to 0.39 for 1-MN, 0.26 to 0.45 for 2-MN, and constant at 0.31 for 1,2-DMN. Under low-NO_x conditions, the SOA yields were measured to be 0.73, 0.68, and 0.58, for naphthalene, 1- MN, and 2-MN, respectively. The SOA was observed to be semivolatile under high-NO_x conditions and essentially nonvolatile under low-NO_x conditions, owing to the higher fraction of ring-retaining products formed under low-NO_x conditions. When applying these measured yields to estimate SOA formation from primary emissions of diesel engines and wood burning, PAHs are estimated to yield 3–5 times more SOA than light aromatic compounds over photooxidation timescales of less than 12 h. PAHs can also account for up to 54% of the total SOA from oxidation of diesel emissions, representing a potentially large source of urban SOA

    Biomass burning and urban air pollution over the Central Mexican Plateau

    Get PDF
    Observations during the 2006 dry season of highly elevated concentrations of cyanides in the atmosphere above Mexico City (MC) and the surrounding plains demonstrate that biomass burning (BB) significantly impacted air quality in the region. We find that during the period of our measurements, fires contribute more than half of the organic aerosol mass and submicron aerosol scattering, and one third of the enhancement in benzene, reactive nitrogen, and carbon monoxide in the outflow from the plateau. The combination of biomass burning and anthropogenic emissions will affect ozone chemistry in the MC outflow

    Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO_3)

    Get PDF
    Secondary organic aerosol (SOA) formation from the reaction of isoprene with nitrate radicals (NO3) is investigated in the Caltech indoor chambers. Experiments are performed in the dark and under dry conditions (RH<10%) using N2O5 as a source of NO3 radicals. For an initial isoprene concentration of 18.4 to 101.6 ppb, the SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) ranges from 4.3% to 23.8%. By examining the time evolutions of gas-phase intermediate products and aerosol volume in real time, we are able to constrain the chemistry that leads to the formation of low-volatility products. Although the formation of ROOR from the reaction of two peroxy radicals (RO2) has generally been considered as a minor channel, based on the gas-phase and aerosol-phase data it appears that RO2+RO2 reaction (self reaction or cross-reaction) in the gas phase yielding ROOR products is a dominant SOA formation pathway. A wide array of organic nitrates and peroxides are identified in the aerosol formed and mechanisms for SOA formation are proposed. Using a uniform SOA yield of 10% (corresponding to Mo≅10 μg m−3), it is estimated that ~2 to 3 Tg yr−1 of SOA results from isoprene + NO3. The extent to which the results from this study can be applied to conditions in the atmosphere depends on the fate of peroxy radicals (i.e. the relative importance of RO2+RO2 versus RO2+NO3 reactions) in the nighttime troposphere

    Measurement of atmospheric nitrous acid at Blodgett Forest during BEARPEX2007

    Get PDF
    Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) in the lower troposphere. Understanding HONO chemistry, particularly its sources and contribution to HO_x (=OH+HO_2) production, is very important for understanding atmospheric oxidation processes. A highly sensitive instrument for detecting atmospheric HONO based on wet chemistry followed by liquid waveguide long path absorption photometry was deployed in the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) at Blodgett Forest, California in late summer 2007. The median diurnal variation shows minimum HONO levels of about 20–30 pptv during the day and maximum levels of about 60–70 pptv at night, a diurnal pattern quite different from the results at various other forested sites. Measured HONO/NO_2 ratios for a 24-h period ranged from 0.05 to 0.13 with a mean ratio of 0.07. Speciation of reactive nitrogen compounds (NO_y) indicates that HONO accounted for only ~3% of total NO_y. However, due to the fast HONO loss through photolysis, a strong HONO source (1.59 ppbv day^(−1)) existed in this environment in order to sustain the observed HONO levels, indicating the significant role of HONO in NO_y cycling. The wet chemistry HONO measurements were compared to the HONO measurements made with a Chemical Ionization Mass Spectrometer (CIMS) over a three-day period. Good agreement was obtained between the measurements from the two different techniques. Using the expansive suite of photochemical and meteorological measurements, the contribution of HONO photolysis to HO_x budget was calculated to be relatively small (6%) compared to results from other forested sites. The lower HONO mixing ratio and thus its smaller contribution to HO_x production are attributed to the unique meteorological conditions and low acid precipitation at Blodgett Forest. Further studies of HONO in this kind of environment are needed to test this hypothesis and to improve our understanding of atmospheric oxidation and nitrogen budget

    Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes

    Get PDF
    Secondary organic aerosol (SOA) formation from the photooxidation of one monoterpene (α-pinene) and two sesquiterpenes (longifolene and aromadendrene) is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA formation follows the same trend as that observed previously for a number of SOA precursors, including isoprene, in which SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) decreases as NOx level increases. The NOx dependence of SOA yield for the sesquiterpenes, longifolene and aromadendrene, however, differs from that determined for isoprene and α-pinene; the aerosol yield under high-NOx conditions substantially exceeds that under low-NOx conditions. The reversal of the NOx dependence of SOA formation for the sesquiterpenes is consistent with formation of relatively low-volatility organic nitrates, and/or the isomerization of large alkoxy radicals leading to less volatile products. Analysis of the aerosol chemical composition for longifolene confirms the presence of organic nitrates under high-NOx conditions. Consequently the formation of SOA from certain biogenic hydrocarbons such as sesquiterpenes (and possibly large anthropogenic hydrocarbons as well) may be more efficient in polluted air

    Boreal forest fire emissions in fresh Canadian smoke plumes: C_1-C_(10) volatile organic compounds (VOCs), CO_2, CO, NO_2, NO, HCN and CH_3CN

    Get PDF
    Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas chromatography. Together with simultaneous measurements of CO_2, CO, CH_4, CH_2O, NO_2, NO, HCN and CH_3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH_2O) were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO_2, CO and CH_4, the largest emission factors (EFs) for individual species were formaldehyde (2.1 ± 0.2 g kg^(−1)), followed by methanol, NO_2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH_3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr^(−1) in the form of NMVOCs, with approximately 41% of the carbon released as C_1-C_2 NMVOCs and 21% as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA) formation. The fire-averaged EF of dichloromethane or CH_2Cl_2, (6.9 ± 8.6) × 10^(−4)gkg^(−1), was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl_3) or methyl chloroform (CH_3CCl_3) from boreal forest fires. The speciated hydrocarbon measurements presented here show the importance of carbon released by short-chain NMVOCs, the strong contribution of pinene emissions from boreal forest fires, and the wide range of compound classes in the most abundantly emitted NMVOCs, all of which can be used to improve biomass burning inventories in local/global models and reduce uncertainties in model estimates of trace gas emissions and their impact on the atmosphere

    On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials

    Full text link
    The paper concerns L1L^1- convergence to equilibrium for weak solutions of the spatially homogeneous Boltzmann Equation for soft potentials (-4\le \gm<0), with and without angular cutoff. We prove the time-averaged L1L^1-convergence to equilibrium for all weak solutions whose initial data have finite entropy and finite moments up to order greater than 2+|\gm|. For the usual L1L^1-convergence we prove that the convergence rate can be controlled from below by the initial energy tails, and hence, for initial data with long energy tails, the convergence can be arbitrarily slow. We also show that under the integrable angular cutoff on the collision kernel with -1\le \gm<0, there are algebraic upper and lower bounds on the rate of L1L^1-convergence to equilibrium. Our methods of proof are based on entropy inequalities and moment estimates.Comment: This version contains a strengthened theorem 3, on rate of convergence, considerably relaxing the hypotheses on the initial data, and introducing a new method for avoiding use of poitwise lower bounds in applications of entropy production to convergence problem

    Role of aldehyde chemistry and NO_x concentrations in secondary organic aerosol formation

    Get PDF
    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C_4-unsaturated aldehyde) under urban high-NO_x conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NO_x regime. Here we show that as a result of this chemistry, NO_2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NO_x effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO_2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO_2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO_2) formation is structurally unfavorable. At atmospherically relevant NO_2/NO ratios (3–8), the SOA yields from isoprene high-NO_x photooxidation are 3 times greater than previously measured at lower NO_2/NO ratios. At sufficiently high NO_2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO_2 can exceed that from RO_2+HO_2 reactions under the same inorganic seed conditions, making RO_2+NO_2 an important channel for SOA formation
    corecore