Abstract

The paper concerns L1L^1- convergence to equilibrium for weak solutions of the spatially homogeneous Boltzmann Equation for soft potentials (-4\le \gm<0), with and without angular cutoff. We prove the time-averaged L1L^1-convergence to equilibrium for all weak solutions whose initial data have finite entropy and finite moments up to order greater than 2+|\gm|. For the usual L1L^1-convergence we prove that the convergence rate can be controlled from below by the initial energy tails, and hence, for initial data with long energy tails, the convergence can be arbitrarily slow. We also show that under the integrable angular cutoff on the collision kernel with -1\le \gm<0, there are algebraic upper and lower bounds on the rate of L1L^1-convergence to equilibrium. Our methods of proof are based on entropy inequalities and moment estimates.Comment: This version contains a strengthened theorem 3, on rate of convergence, considerably relaxing the hypotheses on the initial data, and introducing a new method for avoiding use of poitwise lower bounds in applications of entropy production to convergence problem

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019