28,290 research outputs found

    Tool pre-tensions covers prior to lacing

    Get PDF
    In securing a bulky object in a storage compartment, a cinching or tightening tool is used to draw two opposing cover halves together at a predetermined tension to permit quick lacing to retain the stored object. This tool is also useful in fabrication industries to draw components together during assembly or treating

    2H and 13C NMR studies on the temperature-dependent water and protein dynamics in hydrated elastin, myoglobin and collagen

    Full text link
    2H NMR spin-lattice relaxation and line-shape analyses are performed to study the temperature-dependent dynamics of water in the hydration shells of myoglobin, elastin, and collagen

    Theism and Psychological Science: A Call for Rapprochement

    Full text link
    The authors offer two arguments for the inclusion of theism in natural science. First, an argument against excluding theism is offered. Though early roots of science promoted a view that it is a way to accumulate knowledge that is untainted by presuppositions and traditions, postmodern critiques call this into question. Scientists have sometimes rejected religion as a context-dependent, tradition-based way of knowing, yet science itself is also context-dependent and tradition-based. Second, an argument for including theism in psychological is offered. Theistic beliefs are relevant insofar as they are part of human experience for many, they represent a form of human diversity, and they have been associated with some positive health outcomes

    V405 Peg (RBS 1955): A Nearby, Low-Luminosity Cataclysmic Binary

    Full text link
    (Abridged). The cataclysmic binary V405 Peg, originally discovered as ROSAT Bright Source (RBS) 1955 (= 1RXS J230949.6+213523), shows a strong contribution from a late-type secondary star in its optical spectrum, which led Schwope et al. to suggest it to be among the nearest cataclysmic binaries. We present extensive optical observations of V405 Peg. Time-series spectroscopy shows the orbital period, Porb, to be 0.1776469(7) d (= 4.2635 hr), or 5.629 cycle/d. We classify the secondary as M3 - M4.5. Astrometry with the MDM 2.4m telescope gives a parallax 7.2 +- 1.1 milli-arcsec, and a relative proper motion of 58 mas/yr. Our best estimate of the distance yields d = 149 (+26, -20) pc. The secondary stars's radial velocity has K2 = 92 +- 3 km/s, indicating a fairly low orbital inclination if the masses are typical. Extensive I-band time-series observations in the show the system varying between a minimum brightness level of I = 14.14 and states of enhanced activity about 0.2 mag brighter. While the low-state shows an ellipsoidal modulation, an additional photometric modulation appears in the high state, with 0.1 mag amplitude and period 220-280 min. The frequency of this modulation appears to be stable for a month or so, but no single period was consistently detected from one observing season to the next. We estimate the system luminosity by combining optical measurements with the archival X-ray spectrum. The implied mass accretion rate is orders of magnitudes below the predictions for the standard angular momentum loss above the period gap. The system may possibly belong to a largely undiscovered population of hibernating CVs.Comment: 11 figures; 7 of these are .png or .jpg to save space. In press for Publications of the Astronomical Society of the Pacifi

    NASA Workshop on future directions in surface modeling and grid generation

    Get PDF
    Given here is a summary of the paper sessions and panel discussions of the NASA Workshop on Future Directions in Surface Modeling and Grid Generation held a NASA Ames Research Center, Moffett Field, California, December 5-7, 1989. The purpose was to assess U.S. capabilities in surface modeling and grid generation and take steps to improve the focus and pace of these disciplines within NASA. The organization of the workshop centered around overviews from NASA centers and expert presentations from U.S. corporations and universities. Small discussion groups were held and summarized by group leaders. Brief overviews and a panel discussion by representatives from the DoD were held, and a NASA-only session concluded the meeting. In the NASA Program Planning Session summary there are five recommended steps for NASA to take to improve the development and application of surface modeling and grid generation

    Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study

    Full text link
    The origin of the non-exponential relaxation of silver ions in the crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate two-time and three-time 109Ag NMR correlation functions. The non-exponentiality is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an intrinsic non-exponentiality. Thus, the data give no evidence for the relevance of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure

    Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion

    Get PDF
    We present results of a study of neutrino oscillation based on a 766 ton/year exposure of KamLAND to reactor antineutrinos. We observe 258 v_e candidate events with energies above 3.4 MeV compared to 365.2±23.7 events expected in the absence of neutrino oscillation. Accounting for 17.8±7.3 expected background events, the statistical significance for reactor v_e over bar (e) disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from v_e oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives Δm^2=7.9_(-0.5)^(+0.6)x10^(-5) eV^2. A global analysis of data from KamLAND and solar-neutrino experiments yields Δm^2=7.9_(-0.5)^(+0.6)x10^(-5) eV^2 and tan^2θ=0.40_(-0.07)^(+0.10), the most precise determination to date

    Mass Hierarchy Resolution in Reactor Anti-neutrino Experiments: Parameter Degeneracies and Detector Energy Response

    Get PDF
    Determination of the neutrino mass hierarchy using a reactor neutrino experiment at ∼\sim60 km is analyzed. Such a measurement is challenging due to the finite detector resolution, the absolute energy scale calibration, as well as the degeneracies caused by current experimental uncertainty of ∣Δm322∣|\Delta m^2_{32}|. The standard χ2\chi^2 method is compared with a proposed Fourier transformation method. In addition, we show that for such a measurement to succeed, one must understand the non-linearity of the detector energy scale at the level of a few tenths of percent.Comment: 7 pages, 6 figures, accepted by PR

    High Sensitivity Search for v_e’s from the Sun and Other Sources at KamLAND

    Get PDF
    Data corresponding to a KamLAND detector exposure of 0.28 kton yr has been used to search for ν̅ _e’s in the energy range 8.3 < E_(ν̅e) < 14.8  MeV. No candidates were found for an expected background of 1.1±0.4 events. This result can be used to obtain a limit on ν̅_e fluxes of any origin. Assuming that all ν̅_e flux has its origin in the Sun and has the characteristic ^8B solar ν_e energy spectrum, we obtain an upper limit of 3.7×10^2  cm^(-2) ^(s-1) (90% C.L.) on the ν̅_e flux. We interpret this limit, corresponding to 2.8×10^(-4) of the standard solar model ^8B ν_e flux, in the framework of spin-flavor precession and neutrino decay models
    • …
    corecore