1,189 research outputs found

    Simulating Star Formation and Feedback in Galactic Disk Models

    Full text link
    We use a high-resolution grid-based hydrodynamics method to simulate the multi-phase interstellar medium in a Milky Way-size quiescent disk galaxy. The models are global and three-dimensional, and include a treatment of star formation and feedback. We examine the formation of gravitational instabilities and show that a form of the Toomre instability criterion can successfully predict where star formation will occur. Two common prescriptions for star formation are investigated. The first is based on cosmological simulations and has a relatively low threshold for star formation, but also enforces a comparatively low efficiency. The second only permits star formation above a number density of 1000 cm^-3 but adopts a high efficiency. We show that both methods can reproduce the observed slope of the relationship between star formation and gas surface density (although at too high a rate for our adopted parameters). A run which includes feedback from type II supernovae is successful at driving gas out of the plane, most of which falls back onto the disk. This feedback also substantially reduces the star formation rate. Finally, we examine the density and pressure distribution of the ISM, and show that there is a rough pressure equilibrium in the disk, but with a wide range of pressures at a given location (and even wider for the case including feedbackComment: 14 pages, 12 figures, accepted to Astrophysical Journa

    Protective Immunity against Infection with <i>Mycoplasma haemofelis</i>

    Get PDF
    Hemoplasmas are potentially zoonotic mycoplasmal pathogens, which are not consistently cleared by antibiotic therapy. Mycoplasma haemofelis is the most pathogenic feline hemoplasma species. The aim of this study was to determine how cats previously infected with M. haemofelis that had recovered reacted when rechallenged with M. haemofelis and to characterize the immune response following de novo M. haemofelis infection and rechallenge. Five specific-pathogen-free (SPF)-derived naive cats (group A) and five cats that had recovered from M. haemofelis infection (group B) were inoculated subcutaneously with M. haemofelis. Blood M. haemofelis loads were measured by quantitative PCR (qPCR), antibody response to heat shock protein 70 (DnaK) by enzyme-linked immunosorbent assay (ELISA), blood lymphocyte cell subtypes by flow cytometry, and cytokine mRNA levels by quantitative reverse transcriptase PCR. Group A cats all became infected with high bacterial loads and seroconverted, while group B cats were protected from reinfection, thus providing the unique opportunity to study the immunological parameters associated with this protective immune response against M. haemofelis. First, a strong humoral response to DnaK was only observed in group A, demonstrating that an antibody response to DnaK is not important for protective immunity. Second, proinflammatory cytokine interleukin-6 (IL-6) mRNA levels appeared to increase rapidly postinoculation in group B, indicating a possible role in protective immunity. Third, an increase in IL-12p35 and -p40 mRNA and decrease in the Th2/Th1 ratio observed in group A suggest that a Th1-type response is important in primary infection. This is the first study to demonstrate protective immunity against M. haemofelis reinfection, and it provides important information for potential future hemoplasma vaccine design

    Disaster displacement and zoonotic disease dynamics: The impact of structural and chronic drivers in Sindh, Pakistan

    Get PDF
    Projected increases in human and animal displacement driven by climate change, disasters and related environmental degradation will have significant implications to global health. Pathways for infectious disease transmission including zoonoses, diseases transmitted between animals and humans, are complex and non-linear. While forced migration is considered an important driver for the spread of zoonoses, actual disease dynamics remain under researched. This paper presents the findings of a case study investigating how disaster displacement affected zoonotic disease transmission risk following the 2010 ‘superfloods’ in Sindh province, Pakistan. We interviewed 30 key informants and 17 household members across 6 rural communities between March and November 2019, supported by observational studies and a review of secondary data. Results were analysed using the ecosocial theoretical framework. Buffalo, cattle and goats were often the only moveable asset, therefore livestock was an important consideration in determining displacement modality and destination location, and crowded locations were avoided to protect human and animal health. Meanwhile however, livestock was rarely included in the humanitarian response, resulting in communities and households fragmenting according to the availability of livestock provisions. We found that rather than a driver for disease, displacement acted as a process affecting community, household and individual zoonotic disease risk dynamics, based on available resources and social networks before, during and after displacement, rooted in the historical, political and socio-economic context. We conclude that in rural Sindh, disaster displaced populations’ risk of zoonoses is the result of changes in dynamics rooted in pre-existing structural and chronic inequalities, making people more or less vulnerable to disease through multiple interlinked pathways. Our findings have implications for policy makers and humanitarian responders assisting displaced populations dependent on livestock, with a call to integrate livestock support in humanitarian policies and responses for health, survival and recovery

    The formation of a functional retinal pigment epithelium occurs on porous polytetrafluoroethylene substrates independently of the surface chemistry

    Get PDF
    Subretinal transplantation of functioning retinal pigment epithelial (RPE) cells may have the potential to preserve or restore vision in patients affected by blinding diseases such as age-related macular degeneration (AMD). One of the critical steps in achieving this is the ability to grow a functioning retinal pigment epithelium, which may need a substrate on which to grow and to aid transplantation. Tailoring the physical and chemical properties of the substrate should help the engineered tissue to function in the long term. The purpose of the study was to determine whether a functioning monolayer of RPE cells could be produced on expanded polytetrafluoroethylene substrates modified by either an ammonia plasma treatment or an n-Heptylamine coating, and whether the difference in surface chemistries altered the extracellular matrix the cells produced. Primary human RPE cells were able to form a functional, cobblestone monolayer on both substrates, but the formation of an extracellular matrix to exhibit a network structure took months, whereas on non-porous substrates with the same surface chemistry, a similar appearance was observed after a few weeks. This study suggests that the surface chemistry of these materials may not be the most critical factor in the development of growth of a functional monolayer of RPE cells as long as the cells can attach and proliferate on the surface. This has important implications in the design of strategies to optimise the clinical outcomes of subretinal transplant procedures

    A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect

    Full text link
    Electric field, uniform within the slab, emerging due to Fermi level pinning at its both sides is analyzed using DFT simulations of the SiC surface slabs of different thickness. It is shown that for thicker slab the field is nonuniform and this fact is related to the surface state charge. Using the electron density and potential profiles it is proved that for high precision simulations it is necessary to take into account enough number of the Si-C layers. We show that using 12 diatomic layers leads to satisfactory results. It is also demonstrated that the change of the opposite side slab termination, both by different type of atoms or by their location, can be used to adjust electric field within the slab, creating a tool for simulation of surface properties, depending on the doping in the bulk of semiconductor. Using these simulations it was found that, depending on the electric field, the energy of the surface states changes in a different way than energy of the bulk states. This criterion can be used to distinguish Shockley and Tamm surface states. The electronic properties, i.e. energy and type of surface states of the three clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC(0001ˉ000 \bar{1}) are analyzed and compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table

    Non-ribosomal phylogenetic exploration of Mollicute species:New insights into haemoplasma taxonomy

    Get PDF
    AbstractNine species of uncultivable haemoplasmas and several Mycoplasma species were examined by partial sequencing of two protein-encoding housekeeping genes. Partial glyceraldehyde-3-phosphate dehydrogenase (gapA) and heat shock protein 70 (dnaK) gene sequences were determined for these Mollicute species; in total nine gapA sequences and ten dnaK sequences were obtained. Phylogenetic analyses of these sequences, along with those of a broad selection of Mollicute species downloaded from GenBank, for the individual genes, and for the gapA and dnaK concatenated data set, revealed a clear separation of the haemoplasmas from other species within the Mycoplasma genus; indeed the haemoplasmas resided within a single clade which was phylogenetically detached from the pneumoniae group of Mycoplasmas. This is the first report to examine the use of gapA and dnaK, as well as a concatenated data set, for phylogenetic analysis of the haemoplasmas and other Mollicute species. These results demonstrate a distinct phylogenetic separation between the haemoplasmas and Mycoplasmas that corresponds with the biological differences observed in these species, indicating that further evaluation of the haemoplasmas’ relationship with the Mycoplasma genus is required to determine whether reclassification of the haemoplasmas is necessary

    Contrast Mechanisms for the Detection of Ferroelectric Domains with Scanning Force Microscopy

    Full text link
    We present a full analysis of the contrast mechanisms for the detection of ferroelectric domains on all faces of bulk single crystals using scanning force microscopy exemplified on hexagonally poled lithium niobate. The domain contrast can be attributed to three different mechanisms: i) the thickness change of the sample due to an out-of-plane piezoelectric response (standard piezoresponse force microscopy), ii) the lateral displacement of the sample surface due to an in-plane piezoresponse, and iii) the electrostatic tip-sample interaction at the domain boundaries caused by surface charges on the crystallographic y- and z-faces. A careful analysis of the movement of the cantilever with respect to its orientation relative to the crystallographic axes of the sample allows a clear attribution of the observed domain contrast to the driving forces respectively.Comment: 8 pages, 8 figure
    corecore