15,377 research outputs found

    Updated, expanded, fluid properties handbook

    Get PDF
    Revised handbook presents quantitative data, in the form of graphs and charts, pertaining to thermodynamic properties of specific cryogenic fluids and several metals. References to sources of data are cited

    Low-Frequency Quantum Oscillations due to Strong Electron Correlations

    Full text link
    The normal-state energy spectrum of the two-dimensional tt-JJ model in a homogeneous perpendicular magnetic field is investigated. The density of states at the Fermi level as a function of the inverse magnetic field 1B\frac{1}{B} reveals oscillations in the range of hole concentrations 0.08<x<0.180.08<x<0.18. The oscillations have both high- and low-frequency components. The former components are connected with large Fermi surfaces, while the latter with van Hove singularities in the Landau subbands, which traverse the Fermi level with changing BB. The singularities are related to bending the Landau subbands due to strong electron correlations. Frequencies of these components are of the same order of magnitude as quantum oscillation frequencies observed in underdoped cuprates.Comment: 10 pages, 3 figures, Proc. NSS-2013, Yalta. arXiv admin note: text overlap with arXiv:1308.056

    Coherent Excitation of the 6S1/2 to 5D3/2 Electric Quadrupole Transition in 138Ba+

    Full text link
    The electric dipole-forbidden, quadrupole 6S1/2 5D3/2 transition in Ba+ near 2051 nm, with a natural linewidth of 13 mHz, is attractive for potential observation of parity non-conservation, and also as a clock transition for a barium ion optical frequency standard. This transition also offers a direct means of populating the metastable 5D3/2 state to measure the nuclear magnetic octupole moment in the odd barium isotopes. Light from a diode-pumped, solid state Tm,Ho:YLF laser operating at 2051 nm is used to coherently drive this transition between resolved Zeeman levels in a single trapped 138Ba+ ion. The frequency of the laser is stabilized to a high finesse Fabry Perot cavity at 1025 nm after being frequency doubled. Rabi oscillations on this transition indicate a laser-ion coherence time of 3 ms, most likely limited by ambient magnetic field fluctuations.Comment: 5 pages, 5 figure

    Aquila X--1: a low inclination soft X-ray transient

    Get PDF
    We have obtained I-band photometry of the neutron star X-ray transient Aql X--1 during quiescence. We find a periodicity at 2.487 cd-1, which we interpret as twice the orbital frequency (19.30+/-0.05 h). Folding the data on the orbital period, we model the light curve variations as the ellipsoidal modulation of the secondary star. We determine the binary inclination to be 20--31 degrees (90 per cent confidence) and also 95 per cent upper limits to the radial velocity semi-amplitude and rotational broadening of the secondary star to be 117 kms-1 and 50 kms-1 respectively.Comment: 4 pages text, 3 figures, to appear in MNRA

    Fluid properties handbook

    Get PDF
    Single source compilation handbook, has been made of the most accurate available physical property data pertaining to helium, hydrogen, oxygen, and nitrogen

    High accuracy measure of atomic polarizability in an optical lattice clock

    Full text link
    Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clock's sensitivity to electric fields (such as blackbody radiation) as the differential static polarizability of the ground and excited clock levels: 36.2612(7) kHz (kV/cm)^{-2}. The clock's fractional uncertainty due to room temperature blackbody radiation is reduced an order of magnitude to 3 \times 10^{-17}.Comment: 5 pages, 3 figures, 2 table

    Measurement of Lande g factor of 5D5/2 state of BaII with a single trapped ion

    Full text link
    We present the first terrestrial measurement of the Lande g factor of the 5D5/2 state of singly ionized barium. Measurements were performed on single Doppler-cooled 138Ba+ ions in a linear Paul trap. A frequency-stabilized fiber laser with nominal wavelength 1.762 um was scanned across the 6S1/25D5/2 transition to spectroscopically resolve transitions between Zeeman sublevels of the ground and excited states. From the relative positions of the four narrow transitions observed at several different values for the applied magnetic field, we find a value of 1.2020+/-0.0005 for g of 5D5/2.Comment: 3 figure

    On the tear resistance of skin.

    Get PDF
    Tear resistance is of vital importance in the various functions of skin, especially protection from predatorial attack. Here, we mechanistically quantify the extreme tear resistance of skin and identify the underlying structural features, which lead to its sophisticated failure mechanisms. We explain why it is virtually impossible to propagate a tear in rabbit skin, chosen as a model material for the dermis of vertebrates. We express the deformation in terms of four mechanisms of collagen fibril activity in skin under tensile loading that virtually eliminate the possibility of tearing in pre-notched samples: fibril straightening, fibril reorientation towards the tensile direction, elastic stretching and interfibrillar sliding, all of which contribute to the redistribution of the stresses at the notch tip

    Quasiparticle states of the Hubbard model near the Fermi level

    Full text link
    The spectra of the t-U and t-t'-U Hubbard models are investigated in the one-loop approximation for different values of the electron filling. It is shown that the four-band structure which is inherent in the case of half-filling and low temperatures persists also for some excess or deficiency of electrons. Besides, with some departure from half-filling an additional narrow band of quasiparticle states arises near the Fermi level. The dispersion of the band, its bandwidth and the variation with filling are close to those of the spin-polaron band of the t-J model. For moderate doping spectral intensities in the new band and in one of the inner bands of the four-band structure decrease as the Fermi level is approached which leads to the appearance of a pseudogap in the spectrum.Comment: 8 pages, 7 figure

    Hormander class of pseudo-differential operators on compact Lie groups and global hypoellipticity

    Get PDF
    In this paper we give several global characterisations of the Hormander class of pseudo-differential operators on compact Lie groups. The result is applied to give criteria for the ellipticity and the global hypoellipticity of pseudo-differential operators in terms of their matrix-valued full symbols. Several examples of the first and second order globally hypoelliptic differential operators are given. Where the global hypoelliptiticy fails, one can construct explicit examples based on the analysis of the global symbols.Comment: 20 page
    corecore