10,841 research outputs found

    Spectral statistics of molecular resonances in erbium isotopes: How chaotic are they?

    Full text link
    We perform a comprehensive analysis of the spectral statistics of the molecular resonances in 166^{166}Er and 168^{168}Er observed in recent ultracold collision experiments [Frisch et al., Nature {\bf 507}, 475 (2014)] with the aim of determining the chaoticity of this system. We calculate different independent statistical properties to check their degree of agreement with random matrix theory (RMT), and analyze if they are consistent with the possibility of having missing resonances. The analysis of the short-range fluctuations as a function of the magnetic field points to a steady increase of chaoticity until B30B \sim 30 G. The repulsion parameter decreases for higher magnetic fields, an effect that can be interpreted as due to missing resonances. The analysis of long-range fluctuations allows us to be more quantitative and estimate a 2025%20-25\% fraction of missing levels. Finally, a study of the distribution of resonance widths provides additional evidence supporting missing resonances of small width compared with the experimental magnetic field resolution. We conclude that further measurements with increased resolution will be necessary to give a final answer to the problem of missing resonances and the agreement with RMT.Comment: 9 pages, 6 figure

    The different origins of magnetic fields and activity in the Hertzsprung gap stars, OU Andromedae and 31 Comae

    Full text link
    Context: When crossing the Hertzsprung gap, intermediate-mass stars develop a convective envelope. Fast rotators on the main sequence, or Ap star descendants, are expected to become magnetic active subgiants during this evolutionary phase. Aims: We compare the surface magnetic fields and activity indicators of two active, fast rotating red giants with similar masses and spectral class but diferent rotation rates - OU And (Prot=24.2 d) and 31 Com (Prot=6.8 d) - to address the question of the origin of their magnetism and high activity. Methods: Observations were carried out with the Narval spectropolarimeter in 2008 and 2013.We used the least squares deconvolution technique to extract Stokes V and I profiles to detect Zeeman signatures of the magnetic field of the stars. We provide Zeeman-Doppler imaging, activity indicator monitoring, and a precise estimation of stellar parameters. We use stellar evolutionary models to infer the evolutionary status and the initial rotation velocity on the main sequence. Results: The detected magnetic field of OU And is a strong one. Its longitudinal component Bl reaches 40 G and presents an about sinusoidal variation with reversal of the polarity. The magnetic topology of OU And is dominated by large scale elements and is mainly poloidal with an important dipole component, and a significant toroidal component. The detected magnetic field of 31 Com is weaker, with a magnetic map showing a more complex field geometry, and poloidal and toroidal components of equal contributions. The evolutionary models show that the progenitors of OU And and 31 Com must have been rotat Conclusions: OU And appears to be the probable descendant of a magnetic Ap star, and 31 Com the descendant of a relatively fast rotator on the main sequence.Comment: 16 pages, 12 figure

    Artificially induced positronium oscillations in a two-sheeted spacetime: consequences on the observed decay processes

    Get PDF
    Following recent theoretical results, it is suggested that positronium (Ps) might undergo spontaneous oscillations between two 4D spacetime sheets whenever subjected to constant irrotational magnetic vector potentials. We show that these oscillations that would come together with o-Ps/p-Ps oscillations should have important consequences on Ps decay rates. Experimental setup and conditions are also suggested for demonstrating in non accelerator experiments this new invisible decay mode.Comment: 9 pages, 2 figures. Minor form correction. Accepted for publication in Int. J. of Modern Physics

    Magnetic field structure in single late-type giants: Beta Ceti in 2010 - 2012

    Full text link
    The data were obtained using two spectropolarimeters - Narval at the Bernard Lyot Telescope, Pic du Midi, France, and ESPaDOnS at CFHT, Hawaii. Thirty-eight circularly-polarized spectra have been collected in the period June 2010 - January 2012. The Least Square Deconvolution method was applied for extracting high signal-to-noise ratio line profiles, from which we measure the surface-averaged longitudinal magnetic field Bl. Chromospheric activity indicators CaII K, H_alpha, CaII IR (854.2 nm) and radial velocity were simultaneously measured and their variability was analysed together with the behavior of Bl. The Zeeman Doppler Imaging (ZDI) inversion technique was employed for reconstruction of the large-scale magnetic field and two magnetic maps of Beta Ceti are presented for two periods (June 2010 - December 2010 and June 2011 - January 2012). Bl remains of positive polarity for the whole observational period. The behavior of the line activity indicators is in good agreement with the Bl variations. The two ZDI maps show a mainly axisymmetric and poloidal magnetic topology and a simple surface magnetic field configuration dominated by a dipole. Little evolution is observed between the two maps, in spite of a 1 yr interval between both subsets. We also use state-of-the-art stellar evolution models to constrain the evolutionary status of Beta Ceti. We derive a mass of 3.5 M_sun and propose that this star is already in the central-helium burning phase. Taking into account all our results and the evolutionary status of the star, we suggest that dynamo action alone may not be eficient enough to account for the high magnetic activity of Beta Ceti. As an alternate option, we propose that it may be an Ap star descendant presently undergoing central helium-burning and still exhibiting a remnant of the Ap star magnetic field.Comment: 10 pages; 5 figures; 3 table

    A polarity reversal in the large-scale magnetic field of the rapidly rotating Sun HD 190771

    Full text link
    Aims. We investigate the long-term evolution of the large-scale photospheric magnetic field geometry of the solar-type star HD 190771. With fundamental parameters very close to those of the Sun except for a shorter rotation period of 8.8 d, HD 190771 provides us with a first insight into the specific impact of the rotation rate in the dynamo generation of magnetic fields in 1 MM_\odot stars. Methods. We use circularly polarized, high-resolution spectra obtained with the NARVAL spectropolarimeter (Observatoire du Pic du Midi, France) and compute cross-correlation line profiles with high signal-to-noise ratio to detect polarized Zeeman signatures. From three phase-resolved data sets collected during the summers of 2007, 2008, and 2009, we model the large-scale photospheric magnetic field of the star by means of Zeeman-Doppler imaging and follow its temporal evolution. Results. The comparison of the magnetic maps shows that a polarity reversal of the axisymmetric component of the large-scale magnetic field occurred between 2007 and 2008, this evolution being observed in both the poloidal and toroidal magnetic components. Between 2008 and 2009, another type of global evolution occured, characterized by a sharp decrease of the fraction of magnetic energy stored in the toroidal component. These changes were not accompanied by significant evolution in the total photospheric magnetic energy. Using our spectra to perform radial velocity measurements, we also detect a very low-mass stellar companion to HD 190771.Comment: Accepted by Astronomy and Astrophysics (Letter to the Editor

    Les troubles musculo-squelettiques des membres supérieurs

    Get PDF

    Search for surface magnetic fields in Mira stars. First detection in chi Cyg

    Full text link
    In order to complete the knowledge of the magnetic field and of its influence during the transition from Asymptotic Giant Branch to Planetary Nebulae stages, we have undertaken a search for magnetic fields at the surface of Mira stars. We used spectropolarimetric observations, collected with the Narval instrument at TBL, in order to detect - with Least Squares Deconvolution method - a Zeeman signature in the visible part of the spectrum. We present the first spectropolarimetric observations of the S-type Mira star chi Cyg, performed around its maximum light. We have detected a polarimetric signal in the Stokes V spectra and we have established its Zeeman origin. We claim that it is likely to be related to a weak magnetic field present at the photospheric level and in the lower part of the stellar atmosphere. We have estimated the strength of its longitudinal component to about 2-3 Gauss. This result favors a 1/r law for the variation of the magnetic field strength across the circumstellar envelope of chi Cyg. This is the first detection of a weak magnetic field at the stellar surface of a Mira star and we discuss its origin in the framework of shock waves periodically propagating throughout the atmosphere of these radially pulsating stars. At the date of our observations of chi Cyg, the shock wave reaches its maximum intensity, and it is likely that the shock amplifies a weak stellar magnetic field during its passage through the atmosphere. Without such an amplification by the shock, the magnetic field strength would have been too low to be detected. For the first time, we also report strong Stokes Q and U signatures (linear polarization) centered onto the zero velocity (i.e., at the shock front position). They seem to indicate that the radial direction would be favored by the shock during its propagation throughout the atmosphere.Comment: 9 pages, 4 figures accepted by Astronomy and Astrophysics (21 November 2013
    corecore