738 research outputs found

    Universality of optimal measurements

    Get PDF
    We present optimal and minimal measurements on identical copies of an unknown state of a qubit when the quality of measuring strategies is quantified with the gain of information (Kullback of probability distributions). We also show that the maximal gain of information occurs, among isotropic priors, when the state is known to be pure. Universality of optimal measurements follows from our results: using the fidelity or the gain of information, two different figures of merits, leads to exactly the same conclusions. We finally investigate the optimal capacity of NN copies of an unknown state as a quantum channel of information.Comment: Revtex, 5 pages, no figure

    Quantum estimation via minimum Kullback entropy principle

    Full text link
    We address quantum estimation in situations where one has at disposal data from the measurement of an incomplete set of observables and some a priori information on the state itself. By expressing the a priori information in terms of a bias toward a given state the problem may be faced by minimizing the quantum relative entropy (Kullback entropy) with the constraint of reproducing the data. We exploit the resulting minimum Kullback entropy principle for the estimation of a quantum state from the measurement of a single observable, either from the sole mean value or from the complete probability distribution, and apply it as a tool for the estimation of weak Hamiltonian processes. Qubit and harmonic oscillator systems are analyzed in some details.Comment: 7 pages, slightly revised version, no figure

    Quantifying the complexity of random Boolean networks

    Full text link
    We study two measures of the complexity of heterogeneous extended systems, taking random Boolean networks as prototypical cases. A measure defined by Shalizi et al. for cellular automata, based on a criterion for optimal statistical prediction [Shalizi et al., Phys. Rev. Lett. 93, 118701 (2004)], does not distinguish between the spatial inhomogeneity of the ordered phase and the dynamical inhomogeneity of the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing complexity values for networks in the ordered and critical regimes and for highly disordered networks, peaking somewhere in the disordered regime. Individual nodes with high complexity are the ones that pass the most information from the past to the future, a quantity that depends in a nontrivial way on both the Boolean function of a given node and its location within the network.Comment: 8 pages, 4 figure

    Holevo's bound from a general quantum fluctuation theorem

    Full text link
    We give a novel derivation of Holevo's bound using an important result from nonequilibrium statistical physics, the fluctuation theorem. To do so we develop a general formalism of quantum fluctuation theorems for two-time measurements, which explicitly accounts for the back action of quantum measurements as well as possibly non-unitary time evolution. For a specific choice of observables this fluctuation theorem yields a measurement-dependent correction to the Holevo bound, leading to a tighter inequality. We conclude by analyzing equality conditions for the improved bound.Comment: 5 page

    Function reconstruction as a classical moment problem: A maximum entropy approach

    Full text link
    We present a systematic study of the reconstruction of a non-negative function via maximum entropy approach utilizing the information contained in a finite number of moments of the function. For testing the efficacy of the approach, we reconstruct a set of functions using an iterative entropy optimization scheme, and study the convergence profile as the number of moments is increased. We consider a wide variety of functions that include a distribution with a sharp discontinuity, a rapidly oscillatory function, a distribution with singularities, and finally a distribution with several spikes and fine structure. The last example is important in the context of the determination of the natural density of the logistic map. The convergence of the method is studied by comparing the moments of the approximated functions with the exact ones. Furthermore, by varying the number of moments and iterations, we examine to what extent the features of the functions, such as the divergence behavior at singular points within the interval, is reproduced. The proximity of the reconstructed maximum entropy solution to the exact solution is examined via Kullback-Leibler divergence and variation measures for different number of moments.Comment: 20 pages, 17 figure

    Local and Global Distinguishability in Quantum Interferometry

    Get PDF
    A statistical distinguishability based on relative entropy characterises the fitness of quantum states for phase estimation. This criterion is employed in the context of a Mach-Zehnder interferometer and used to interpolate between two regimes, of local and global phase distinguishability. The scaling of distinguishability in these regimes with photon number is explored for various quantum states. It emerges that local distinguishability is dependent on a discrepancy between quantum and classical rotational energy. Our analysis demonstrates that the Heisenberg limit is the true upper limit for local phase sensitivity. Only the `NOON' states share this bound, but other states exhibit a better trade-off when comparing local and global phase regimes.Comment: 4 pages, in submission, minor revision

    Integrable Hierarchies and Information Measures

    Full text link
    In this paper we investigate integrable models from the perspective of information theory, exhibiting various connections. We begin by showing that compressible hydrodynamics for a one-dimesional isentropic fluid, with an appropriately motivated information theoretic extension, is described by a general nonlinear Schrodinger (NLS) equation. Depending on the choice of the enthalpy function, one obtains the cubic NLS or other modified NLS equations that have applications in various fields. Next, by considering the integrable hierarchy associated with the NLS model, we propose higher order information measures which include the Fisher measure as their first member. The lowest members of the hiearchy are shown to be included in the expansion of a regularized Kullback-Leibler measure while, on the other hand, a suitable combination of the NLS hierarchy leads to a Wootters type measure related to a NLS equation with a relativistic dispersion relation. Finally, through our approach, we are led to construct an integrable semi-relativistic NLS equation.Comment: 11 page

    Statistical distinguishability between unitary operations

    Get PDF
    The problem of distinguishing two unitary transformations, or quantum gates, is analyzed and a function reflecting their statistical distinguishability is found. Given two unitary operations, U1U_1 and U2U_2, it is proved that there always exists a finite number NN such that U1NU_1^{\otimes N} and U2NU_2^{\otimes N} are perfectly distinguishable, although they were not in the single-copy case. This result can be extended to any finite set of unitary transformations. Finally, a fidelity for one-qubit gates, which satisfies many useful properties from the point of view of quantum information theory, is presented.Comment: 6 pages, REVTEX. The perfect distinguishability result is extended to any finite set of gate

    Implications of Form Invariance to the Structure of Nonextensive Entropies

    Get PDF
    The form invariance of the statement of the maximum entropy principle and the metric structure in quantum density matrix theory, when generalized to nonextensive situations, is shown here to determine the structure of the nonextensive entropies. This limits the range of the nonextensivity parameter to so as to preserve the concavity of the entropies. The Tsallis entropy is thereby found to be appropriately renormalized.Comment: 8 page

    Dynamics of the Fisher Information Metric

    Get PDF
    We present a method to generate probability distributions that correspond to metrics obeying partial differential equations generated by extremizing a functional J[gμν(θi)]J[g^{\mu\nu}(\theta^i)], where gμν(θi)g^{\mu\nu}(\theta^i) is the Fisher metric. We postulate that this functional of the dynamical variable gμν(θi)g^{\mu\nu}(\theta^i) is stationary with respect to small variations of these variables. Our approach enables a dynamical approach to Fisher information metric. It allows to impose symmetries on a statistical system in a systematic way. This work is mainly motivated by the entropy approach to nonmonotonic reasoning.Comment: 11 page
    corecore