3 research outputs found

    Effect of sink layer thickness on damping in CoMnGe (5 nm) / Ag (6 nm) / NiFe (x nm) spin valves

    Get PDF
    Poster presented at Magnetism 4 – 5 April 2016, Sheffield.In spin valve structures the damping of a ferromagnetic layer driven at resonance can be modified by the transfer of spin angular momentum into a ‘sink’ ferromagnetic layer. This effect, known as spin pumping, is interface dominated and expected to increase with increasing sink layer thickness up to a saturation absorption depth, previously reported to be 1.2 nm regardless of the sink layer’s composition [1]. Using vector network analyser ferromagnetic resonance (VNA-FMR), we have studied the variation in damping as a function of sink layer thickness in a series of CoMnGe (5 nm) / Ag (6 nm) / NiFe (x nm) spin valves. These measurements show only small variations in the CoMnGe Gilbert damping parameter for x ≤ 1.8 nm, although damping is observed to increase at x = 0.3 and 0.6 nm. Element-resolved x-ray detected ferromagnetic resonance (XFMR) [2] measurements confirm spin transfer torque due to spin pumping as the origin of the damping for x = 1.5 and 1.8 nm, with both thicknesses having the same effective spin mixing conductance, supporting the findings of Ghosh et al [1]. For thicker sink layers the source and sink FMR fields are seen to coincide, hampering the identification of spin pumping. [1] A Ghosh, et al. Physical Review Letters 109, 127202 (2012) [2] M Marcham, et al. Physical Review B 87, 180403 (2013)We thank the Advanced Light Source for access to beamlines 4.0.2 and 6.3.1 (ALS-06433, ALS-07116). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.We thank Diamond Light Source for access to beamlines I06 and I10 (SI8782, SI11585, SI13063) that contributed to the results presented here.This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/J018767/1]

    Dependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag/Ni81Fe19/Ag/Co2MnGe/Ag/Ta spin-valve structures

    Get PDF
    This is the final version of the article. Available from American Physical Society via the DOI in this record.Spin pumping has been studied within Ta / Ag / Ni 81 Fe 19 (0–5 nm) / Ag (6 nm) / Co 2 MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81 Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2 MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. This study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.The authors gratefully acknowledge the support of EPSRC Grant No. EP/J018767/1, and the award of the Exeter-Brown Scholarship in High Frequency Spintronics to C.J.D
    corecore