14,497 research outputs found

    One-loop non-renormalization results in EFTs

    Full text link
    In Effective Field Theories (EFTs) with higher-dimensional operators many anomalous dimensions vanish at the one-loop level for no apparent reason. With the use of supersymmetry, and a classification of the operators according to their embedding in super-operators, we are able to show why many of these anomalous dimensions are zero. The key observation is that one-loop contributions from superpartners trivially vanish in many cases under consideration, making supersymmetry a powerful tool even for non-supersymmetric models. We show this in detail in a simple U(1) model with a scalar and fermions, and explain how to extend this to SM EFTs and the QCD Chiral Langrangian. This provides an understanding of why most "current-current" operators do not renormalize "loop" operators at the one-loop level, and allows to find the few exceptions to this ubiquitous rule.Comment: Corrections made in Sec. 3.2 and Fig.

    Self-Gravitational Corrections to the Cardy-Verlinde Formula and the FRW Brane Cosmology in SdS_5 Bulk

    Full text link
    The semiclassical corrections to the Cardy-Verlinde entropy of a five-dimensional Schwarzschild de-Sitter black hole (SdS_5) are explicitly evaluated. These corrections are considered within the context of KKW analysis and arise as a result of the self-gravitation effect. In addition, a four-dimensional spacelike brane is considered as the boundary of the SdS_5 bulk background. It is already known that the induced geometry of the brane is exactly given by that of a radiation-dominated FRW universe. By exploiting the CFT/FRW-cosmology relation, we derive the self-gravitational corrections to the first Friedmann-like equation which is the equation of the brane motion. The additional term that arises due to the semiclassical analysis can be viewed as stiff matter where the self-gravitational corrections act as the source for it. This result is contrary to standard analysis that regards the charge of SdS_5 bulk black hole as the source for stiff matter. Furthermore, we rewrite the Friedmann-like equation in a such way that it represents the conservation equation of energy of a point particle moving in a one-dimensional effective potential. The self-gravitational corrections to the effective potential and, consequently, to the point particle's motion are obtained. A short analysis on the asymptotic behavior of the 4-dimensional brane is presented.Comment: 16 pages, LaTeX; (v2) references added and correcte

    Renormalization of dimension-six operators relevant for the Higgs decays h→γγ,γZh\rightarrow \gamma\gamma,\gamma Z

    Full text link
    The discovery of the Higgs boson has opened a new window to test the SM through the measurements of its couplings. Of particular interest is the measured Higgs coupling to photons which arises in the SM at the one-loop level, and can then be significantly affected by new physics. We calculate the one-loop renormalization of the dimension-six operators relevant for h→γγ,γZh\rightarrow \gamma\gamma, \gamma Z, which can be potentially important since it could, in principle, give log-enhanced contributions from operator mixing. We find however that there is no mixing from any current-current operator that could lead to this log-enhanced effect. We show how the right choice of operator basis can make this calculation simple. We then conclude that h→γγ,γZh\rightarrow \gamma\gamma, \gamma Z can only be affected by RG mixing from operators whose Wilson coefficients are expected to be of one-loop size, among them fermion dipole-moment operators which we have also included.Comment: 21 pages. Improved version with h -> gamma Z results added and structure of anomalous-dimension matrix determined further. Conclusions unchange

    Joining of thirty three percent by weight random glass fibre reinforced polystyrene using variable frequency microwave

    Get PDF
    [Abstract]: This paper extends the range of applications for Variable Frequency Microwave (VFM) (2 – 18 GHz) facilities to joining thirty three percent by weight glass fibre reinforced polystyrene composite [PS/GF (33%)]. With a given power level, the composite was exposed to various exposure times to microwave irradiation. The primer or coupling agent used was 5-minute two-part adhesive containing 100% liquid epoxy and 8% amine, i.e. Araldite, which was more readily microwave reactive than the composite itself. Bond strengths of the joints were lap shear tested and results were compared with those obtained using fixed frequency (2.45 GHz) microwave processing. The VFMF was operated under software control, which provided automatic data logging facilities. The maximum lap shear bond strength of joint was 430 N/cm2 using variable frequency microwave facility while that obtained by fixed frequency microwave configuration was only 331 N/cm2. The former is nearly 30% stronger than the latter

    Permittivity measurement of thermoplastic composites at elevated temperature

    Get PDF
    [Abstract]: The material properties of greatest importance in microwave processing of a dielectric are the complex relative permittivity Epsilon = Epsilon' - jEpsilon'', and the loss tangent, tan Delta = Epsilon'/Epsilon''. This paper describes two convenient laboratory based methods to obtain Epsilon', Epsilon'' and hence tan Delta of fibre-reinforced thermoplastic (FRTP) composites. One method employs a microwave network analyser in conjunction with a waveguide transmission technique, chosen because it provides the widest possible frequency range with high accuracy. The values of the dielectric constant and dielectric loss of glass fibre reinforced (33%) low density polyethylene, LDPE/GF (33%), polystyrene, PS/GF (33%), and Nylon 66/GF (33%), were obtained. Results are compared with those obtained by another method using a high-temperature dielectric probe

    Improvement of Renormalization-Scale Uncertainties Within Empirical Determinations of the b-Quark Mass

    Full text link
    Accurate determinations of the MS-bar b-quark mass mb(mb)m_b(m_b) from σ(e+e−→hadrons)\sigma(e^+e^-\to{\rm hadrons}) experimental data currently contain three comparable sources of uncertainty; the experimental uncertainty from moments of this cross-section, the uncertainty associated with αs(Mz)\alpha_s(M_z), and the theoretical uncertainty associated with the renormalization scale. Through resummation of all logarithmic terms explicitly determined in the perturbative series by the renormalization-group (RG) equation, it is shown that the renormalization-scale dependence is virtually eliminated as a source of theoretical uncertainty in mb(mb)m_b(m_b). This resummation also reduces the estimated effect of higher-loop perturbative contributions, further reducing the theoretical uncertainties in mb(mb)m_b(m_b). Furthermore, such resummation techniques improve the agreement between the values of the MS-bar b-quark mass extracted from the various moments of R(s)=σ(e+e−→hadrons)/σptR(s)=\sigma(e^+e^-\to{\rm hadrons})/\sigma_{pt} [σpt=4πα2/(3s)\sigma_{pt}=4\pi\alpha^2/(3s)], obviating the need to choose an optimummoment for determining mb(mb)m_b(m_b). Resummation techniques are also shown to reduce renormalization-scale dependence in the relation between b-quark MS-bar and pole mass and in the relation between the pole and 1S1S mass.Comment: 19 pages, latex2e, 6 eps figures contained in latex file. Errors corrected in equations (20)--(22

    Higgs Inflation as a Mirage

    Full text link
    We discuss a simple unitarization of Higgs inflation that is genuinely weakly coupled up to Planckian energies. A large non-minimal coupling between the Higgs and the Ricci curvature is induced dynamically at intermediate energies, as a simple ratio of mass scales. Despite not being dominated by the Higgs field, inflationary dynamics simulates the `Higgs inflation' one would get by blind extrapolation of the low-energy effective Lagrangian, at least qualitatively. Hence, Higgs inflation arises as an approximate `mirage' picture of the true dynamics. We further speculate on the generality of this phenomenon and show that, if Higgs-inflation arises as an effective description, the details of the UV completion are necessary to extract robust quantitative predictions.Comment: 21 pages, 2 figure
    • …
    corecore