98 research outputs found

    Spin Resonance and dc Current Generation in a Quantum Wire

    Get PDF
    We show that in a quantum wire the spin-orbit interaction leads to a narrow spin resonance at low temperatures, even in the absence of an external magnetic field. Resonance absorption by linearly polarized radiation gives a dc spin current; resonance absorption by circularly polarized radiation gives a dc electric current or magnetization

    Phase diagram and critical properties in the Polyakov--Nambu--Jona-Lasinio model

    Full text link
    We investigate the phase diagram of the so-called Polyakov--Nambu--Jona-Lasinio model at finite temperature and nonzero chemical potential with three quark flavours. Chiral and deconfinement phase transitions are discussed, and the relevant order-like parameters are analyzed. The results are compared with simple thermodynamic expectations and lattice data. A special attention is payed to the critical end point: as the strength of the flavour-mixing interaction becomes weaker, the critical end point moves to low temperatures and can even disappear.Comment: Talk given at the 9th International Conference on Quark Confinement and the Hadron Spectrum - QCHS IX, Madrid, Spain, 30 August - September 201

    Computing L-series of hyperelliptic curves

    Full text link
    We discuss the computation of coefficients of the L-series associated to a hyperelliptic curve over Q of genus at most 3, using point counting, generic group algorithms, and p-adic methods.Comment: 15 pages, corrected minor typo

    The Muon Anomalous Magnetic Moment and the Standard Model

    Full text link
    The muon anomalous magnetic moment measurement, when compared with theory, can be used to test many extensions to the standard model. The most recent measurement made by the Brookhaven E821 Collaboration reduces the uncertainty on the world average of a_mu to 0.7 ppm, comparable in precision to theory. This paper describes the experiment and the current theoretical efforts to establish a correct standard model reference value for the muon anomaly.Comment: Plenary Talk; PANIC'02 XVI Particles and Nuclear International Conference, Osaka, Japan; Sept. 30 - Oct. 4, 2002; Report describes the published 0.7 ppm result and updates the theory statu

    News from the Muon (g-2) Experiment at BNL

    Get PDF
    The magnetic moment anomaly a_mu = (g_mu - 2) / 2 of the positive muon has been measured at the Brookhaven Alternating Gradient Synchrotron with an uncertainty of 0.7 ppm. The new result, based on data taken in 2000, agrees well with previous measurements. Standard Model evaluations currently differ from the experimental result by 1.6 to 3.0 standard deviations.Comment: Talk presented at RADCOR - Loops and Legs 2002, Kloster Banz, Germany, September 8-13 2002, to be published in Nuclear Physics B (Proc. Suppl.); 5 pages, 3 figure

    Search for Lorentz and CPT Violation Effects in Muon Spin Precession

    Full text link
    The spin precession frequency of muons stored in the (g−2)(g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for: a nonzero Δωa\Delta\omega_{a} (=ωaμ+−ωaμ−\omega_{a}^{\mu^{+}}-\omega_{a}^{\mu^{-}}); and a sidereal variation of ωaμ±\omega_{a}^{\mu^{\pm}}. No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ=−(1.0±1.1)×10−23b_{Z} =-(1.0 \pm 1.1)\times 10^{-23} GeV; (mμdZ0+HXY)=(1.8±6.0×10−23)(m_{\mu}d_{Z0}+H_{XY}) = (1.8 \pm 6.0 \times 10^{-23}) GeV; and the 95% confidence level limits bˇ⊥μ+<1.4×10−24\check{b}_{\perp}^{\mu^{+}}< 1.4 \times 10^{-24} GeV and bˇ⊥μ−<2.6×10−24\check{b}_{\perp}^{\mu^{-}} < 2.6 \times 10^{-24} GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to answer the referees suggestion

    An Improved Limit on the Muon Electric Dipole Moment

    Get PDF
    Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from the muon g-2 storage ring at Brookhaven National Laboratory. Details on the experimental apparatus and the three analyses are presented. Since the individual results on the positive and negative muon, as well as the combined result, d=-0.1(0.9)E-19 e-cm, are all consistent with zero, we set a new muon EDM limit, |d| < 1.9E-19 e-cm (95% C.L.). This represents a factor of 5 improvement over the previous best limit on the muon EDM.Comment: 19 pages, 15 figures, 7 table

    Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL

    Full text link
    We present the final report from a series of precision measurements of the muon anomalous magnetic moment, a_mu = (g-2)/2. The details of the experimental method, apparatus, data taking, and analysis are summarized. Data obtained at Brookhaven National Laboratory, using nearly equal samples of positive and negative muons, were used to deduce a_mu(Expt) = 11 659 208.0(5.4)(3.3) x 10^-10, where the statistical and systematic uncertainties are given, respectively. The combined uncertainty of 0.54 ppm represents a 14-fold improvement compared to previous measurements at CERN. The standard model value for a_mu includes contributions from virtual QED, weak, and hadronic processes. While the QED processes account for most of the anomaly, the largest theoretical uncertainty, ~0.55 ppm, is associated with first-order hadronic vacuum polarization. Present standard model evaluations, based on e+e- hadronic cross sections, lie 2.2 - 2.7 standard deviations below the experimental result.Comment: Summary paper of E821 Collaboration measurements of the muon anomalous magnetic moment, each reported earlier in Letters or Brief Reports; 96 pages, 41 figures, 16 tables. Revised version submitted to PR

    Search for Lorentz and CPT Violation Effects in Muon Spin Precession

    Full text link
    The spin precession frequency of muons stored in the (g−2)(g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for: a nonzero Δωa\Delta\omega_{a} (=ωaμ+−ωaμ−\omega_{a}^{\mu^{+}}-\omega_{a}^{\mu^{-}}); and a sidereal variation of ωaμ±\omega_{a}^{\mu^{\pm}}. No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ=−(1.0±1.1)×10−23b_{Z} =-(1.0 \pm 1.1)\times 10^{-23} GeV; (mμdZ0+HXY)=(1.8±6.0×10−23)(m_{\mu}d_{Z0}+H_{XY}) = (1.8 \pm 6.0 \times 10^{-23}) GeV; and the 95% confidence level limits bˇ⊥μ+<1.4×10−24\check{b}_{\perp}^{\mu^{+}}< 1.4 \times 10^{-24} GeV and bˇ⊥μ−<2.6×10−24\check{b}_{\perp}^{\mu^{-}} < 2.6 \times 10^{-24} GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to answer the referees suggestion
    • …
    corecore