5,692 research outputs found

    The Quasi-1D S=1/2 Antiferromagnet Cs2CuCl4 in a Magnetic Field

    Full text link
    Magnetic excitations of the quasi-1D S=1/2 Heisenberg antiferromagnet (HAF) Cs2CuCl4 have been measured as a function of magnetic field using neutron scattering. For T<0.62 K and B=0 T the weak inter-chain coupling produces 3D incommensurate ordering. Fields greater than Bc =1.66 T, but less than the field (~8 T) required to fully align the spins, are observed to decouple the chains, and the system enters a disordered intermediate-field phase (IFP). The IFP excitations are in agreement with the predictions of Muller et al. for the 1D S=1/2 HAF, and Talstra and Haldane for the related 1/r^2 chain (the Haldane-Shastry model). This behaviour is inconsistent with linear spin-wave theory.Comment: 10 pages, 4 encapsulated postscript figures, LaTeX, to be published in PRL, e-mail comments to [email protected]

    Temperature Evolution of the Quantum Gap in CsNiCl3

    Full text link
    Neutron scattering measurements on the one-dimensional gapped S=1 antiferromagnet, CsNiCl3, have shown that the excitation corresponding to the Haldane mass gap Delta at low temperatures persists as a resonant feature to high temperatures. We find that the strong upward renormalisation of the gap excitation, by a factor of three between 5 and 70K, is more than enough to overcome its decreasing lifetime. We find that the gap lifetime is substantially shorter than that predicted by the scaling theory of Damle and Sachdev in its low temperature range of validity. The upward gap renormalisation agrees with the non-linear sigma model at low temperatures and even up to T of order 2Delta provided an upper mass cutoff is included.Comment: Latex, 3 figures, accepted by Pysical Review

    The interaction between transpolar arcs and cusp spots

    Get PDF
    Transpolar arcs and cusp spots are both auroral phenomena which occur when the interplanetary magnetic field is northward. Transpolar arcs are associated with magnetic reconnection in the magnetotail, which closes magnetic flux and results in a "wedge" of closed flux which remains trapped, embedded in the magnetotail lobe. The cusp spot is an indicator of lobe reconnection at the high-latitude magnetopause; in its simplest case, lobe reconnection redistributes open flux without resulting in any net change in the open flux content of the magnetosphere. We present observations of the two phenomena interacting--i.e., a transpolar arc intersecting a cusp spot during part of its lifetime. The significance of this observation is that lobe reconnection can have the effect of opening closed magnetotail flux. We argue that such events should not be rare

    Model of two-fluid reconnection

    Full text link
    A theoretical model of quasi-stationary, two-dimensional magnetic reconnection is presented in the framework of incompressible two-fluid magnetohydrodynamics (MHD). The results are compared with recent numerical simulations and experiment.Comment: 4 pages, 1 figure, accepted to Physical Review Letter

    Two and Three Dimensional Incommensurate Modulation in Optimally-Doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    X-ray scattering measurements on optimally-doped single crystal samples of the high temperature superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} reveal the presence of three distinct incommensurate charge modulations, each involving a roughly fivefold increase in the unit cell dimension along the {\bf b}-direction. The strongest scattering comes from the well known (H, K±\pm 0.21, L) modulation and its harmonics. However, we also observe broad diffraction which peak up at the L values complementary to those which characterize the known modulated structure. These diffraction features correspond to correlation lengths of roughly a unit cell dimension, ξc\xi_c∼\sim20 A˚\AA in the {\bf c} direction, and of ξb\xi_b∼\sim 185 A˚\AA parallel to the incommensurate wavevector. We interpret these features as arising from three dimensional incommensurate domains and the interfaces between them, respectively. In addition we investigate the recently discovered incommensuate modulations which peak up at (1/2, K±\pm 0.21, L) and related wavevectors. Here we explicitly study the L-dependence of this scattering and see that these charge modulations are two dimensional in nature with weak correlations on the scale of a bilayer thickness, and that they correspond to short range, isotropic correlation lengths within the basal plane. We relate these new incommensurate modulations to the electronic nanostructure observed in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using STM topography.Comment: 8 pages, 8 figure

    The Core-Wing Anomaly of Cool Ap Stars: Abnormal Balmer Profiles

    Get PDF
    Paper by Cowley et al. The Core-Wing Anomaly Etc. The profiles of Hα\alpha in a number of cool Ap stars are anomalous. Broad wings, indicative of temperatures in the range 7000-8000K end abruptly in narrow cores. The widths of these cores are compatible with those of dwarfs with temperatures of 6000K or lower. This profile has been known for Przybylski's star, but it is seen in other cool Ap's. The Hβ\beta profile in several of these stars shows a similar core-wing anomaly (CWA). In Przybylski's star, the CWA is probably present at higher Balmer members. We are unable to account for these profiles within the context of LTE and normal dwarf atmospheres. We conclude that the atmospheres of these stars are not ``normal.'' This is contrary to a notion that has long been held.Comment: 4 Pages 5 Figures. Submitted to Astronomy and Astrophysics 4 Dec. 200

    Magnetic excitations of spin and orbital moments in cobalt oxide

    Full text link
    Magnetic and phonon excitations in the antiferromagnet CoO with an unquenched orbital angular momentum are studied by neutron scattering. Results of energy scans in several Brillouin zones in the (HHL) plane for energy transfers up to 16 THz are presented. The measurements were performed in the antiferromagnetic ordered state at 6 K (well below TN~290 K) as well as in the paramagnetic state at 450 K. Several magnetic excitation modes are identified from the dependence of their intensity on wavevector and temperature. Within a Hund's rule model the excitations correspond to fluctuations of coupled orbital and spin degrees of freedom whose bandwidth is controlled by interionic superexchange. The different ordering domains give rise to several magnetic peaks at each wavevector transfer.Comment: Accepted for publication in Canadian Journal of Physic
    • …
    corecore