7,241 research outputs found

    QCD Propagators at non-vanishing temperatures

    Full text link
    We investigate the behaviour of the gluon and ghost propagators, especially their infrared properties, at non-vanishing temperatures. To this end we solve their Dyson-Schwinger equations on a torus and find an infrared enhanced ghost propagator and an infrared vanishing gluon propagator.Comment: 2 pages, 2 figures; talk given by B.G. at the Erice summer school on Nuclear Physics, Sept. 16 -- 24, 2003, Erice, Ital

    A luminosity monitor for the A4 parity violation experiment at MAMI

    Full text link
    A water Cherenkov luminosity monitor system with associated electronics has been developed for the A4 parity violation experiment at MAMI. The detector system measures the luminosity of the hydrogen target hit by the MAMI electron beam and monitors the stability of the liquid hydrogen target. Both is required for the precise study of the count rate asymmetries in the scattering of longitudinally polarized electrons on unpolarized protons. Any helicity correlated fluctuation of the target density leads to false asymmetries. The performance of the luminosity monitor, investigated in about 2000 hours with electron beam, and the results of its application in the A4 experiment are presented.Comment: 22 pages, 12 figures, submitted to NIM

    What the Infrared Behaviour of QCD Vertex Functions in Landau gauge can tell us about Confinement

    Get PDF
    The infrared behaviour of Landau gauge QCD vertex functions is investigated employing a skeleton expansion of the Dyson-Schwinger and Renormalization Group equations. Results for the ghost-gluon, three-gluon, four-gluon and quark-gluon vertex functions are presented. Positivity violation of the gluon propagator, and thus gluon confinement, is demonstrated. Results of the Dyson-Schwinger equations for a finite volume are compared to corresponding lattice data. It is analytically demonstrated that a linear rising potential between heavy quarks can be generated by infrared singularities in the dressed quark-gluon vertex. The selfconsistent mechanism that generates these singularities necessarily entails the scalar Dirac amplitudes of the full vertex and the quark propagator. These can only be present when chiral symmetry is broken, either explicitly or dynamically.Comment: 13 pages, 13 figures; to appear in the Proceedings of ``X Hadron Physics 2007'', Florianopolis, Brazil, March 26 - 31, 200

    Risk Allocation in Joint Ventures

    Get PDF
    The method of risk allocation within joint-ventures differs from project to project. In a jointventure the division of responsibilities and risks is not always clear for the participating parties. At this moment there is no model which can lead the risk allocation to good results within a joint-venture. This study has been developed by conducting a literature study and a case study in order to find a suitable model for risk allocation in joint ventures. Using this model, the parties are more aware of risk allocation and it can serve as a guideline the process of risk allocation, as a result of which the participating actors will be able to get a handle on the process

    On the gauge boson's properties in a candidate technicolor theory

    Full text link
    The technicolor scenario replaces the Higgs sector of the standard model with a strongly interacting sector. One candidate for a realization of such a sector is two-technicolor Yang-Mills theory coupled to two degenerate flavors of adjoint, massless techniquarks. Using lattice gauge theory the properties of the technigluons in this scenario are investigated as a function of the techniquark mass towards the massless limit. For that purpose the minimal Landau gauge two-point and three-point correlation functions are determined, including a detailed systematic error analysis. The results are, within the relatively large systematic uncertainties, compatible with a behavior very similar to QCD at finite techniquark mass. However, the limit of massless techniquarks exhibits features which could be compatible with a (quasi-)conformal behavior.Comment: 27 pages, 17 figures, 1 table; v2: persistent notational error corrected, some minor modification

    Gluons at finite temperature in Landau gauge Yang--Mills theory

    Full text link
    The infrared behavior of Yang-Mills theory at finite temperature provides access to the role of confinement. In this review recent results on this topic from lattice calculations and especially Dyson-Schwinger studies are discussed. These indicate persistence of a residual confinement even in the high-temperature phase. The confinement mechanism is very similar to the one in the vacuum for the chromomagnetic sector. In the chromoelectric sector screening occurs at the soft scale g^2T, although not leading to a perturbative behavior.Comment: 15 pages, 4 figures, invited brief review for MPL

    Two infrared Yang-Mills solutions in stochastic quantization and in an effective action formalism

    Get PDF
    Three decades of work on the quantum field equations of pure Yang-Mills theory have distilled two families of solutions in Landau gauge. Both coincide for high (Euclidean) momentum with known perturbation theory, and both predict an infrared suppressed transverse gluon propagator, but whereas the solution known as "scaling" features an infrared power law for the gluon and ghost propagators, the "massive" solution rather describes the gluon as a vector boson that features a finite Debye screening mass. In this work we examine the gauge dependence of these solutions by adopting stochastic quantization. What we find, in four dimensions and in a rainbow approximation, is that stochastic quantization supports both solutions in Landau gauge but the scaling solution abruptly disappears when the parameter controlling the drift force is separated from zero (soft gauge-fixing), recovering only the perturbative propagators; the massive solution seems to survive the extension outside Landau gauge. These results are consistent with the scaling solution being related to the existence of a Gribov horizon, with the massive one being more general. We also examine the effective action in Faddeev-Popov quantization that generates the rainbow and we find, for a bare vertex approximation, that the the massive-type solutions minimise the quantum effective action.Comment: 13 pages, 7 figures. Change of title to reflect version accepted for publicatio

    Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3)

    Full text link
    We study a gauge invariant order parameter for deconfinement and the chiral condensate in SU(2) and SU(3) Yang-Mills theory in the vicinity of the deconfinement phase transition using the Landau gauge quark and gluon propagators. We determine the gluon propagator from lattice calculations and the quark propagator from its Dyson-Schwinger equation, using the gluon propagator as input. The critical temperature and a deconfinement order parameter are extracted from the gluon propagator and from the dependency of the quark propagator on the temporal boundary conditions. The chiral transition is determined using the quark condensate as order parameter. We investigate whether and how a difference in the chiral and deconfinement transition between SU(2) and SU(3) is manifest.Comment: 15 pages, 9 figures. For clarification one paragraph and two references added in the introduction and two sentences at the end of the first and last paragraph of the summary. Appeared in EPJ
    corecore