666,470 research outputs found

    Performance measurement systems and metrics: a framework for monitoring oil operations

    Get PDF
    Oil operations involve high levels of capital equipment and high capacity production processes for which performance measures can assist with monitoring production throughout the oil industry stages. The approach taken in this paper is to utilise the lifecycle approach of asset management as well as organisational resource factors in an integrative manner. This research will examine the use of performance measurement in both private and public oil companies with a focus on Developing Countries. National Oil companies are of national economic importance in Developing Countries. Thus purpose of this paper is to develop a conceptual framework for performance measures of current and future oil operations and the associated asset management for field operations. The approach taken is to recognise the national context and strategic drivers and then to examine within this context the three areas of: Asset Management; Oil Operations (including Technology and Development; Management approaches; Partnerships) and Performance Outcomes

    Landau levels, edge states, and strained magnetic waveguides in graphene monolayers with enhanced spin-orbit interaction

    Get PDF
    The electronic properties of a graphene monolayer in a magnetic and a strain-induced pseudo-magnetic field are studied in the presence of spin-orbit interactions (SOI) that are artificially enhanced, e.g., by suitable adatom deposition. For the homogeneous case, we provide analytical results for the Landau level eigenstates for arbitrary intrinsic and Rashba SOI, including also the Zeeman field. The edge states in a semi-infinite geometry are studied in the absence of the Rashba term. For a critical value of the magnetic field, we find a quantum phase transition separating two phases with spin-filtered helical edge states at the Dirac point. These phases have opposite spin current direction. We also discuss strained magnetic waveguides with inhomogeneous field profiles that allow for chiral snake orbits. Such waveguides are practically immune to disorder-induced backscattering, and the SOI provides non-trivial spin texture to these modes.Comment: 12 pages, 7 figures; v2: minor modifications, published versio

    Effective low-energy theory of superconductivity in carbon nanotube ropes

    Get PDF
    We derive and analyze the low-energy theory of superconductivity in carbon nanotube ropes. A rope is modelled as an array of metallic nanotubes, taking into account phonon-mediated as well as Coulomb interactions, and arbitrary Cooper pair hopping amplitudes (Josephson couplings) between different tubes. We use a systematic cumulant expansion to construct the Ginzburg-Landau action including quantum fluctuations. The regime of validity is carefully established, and the effect of phase slips is assessed. Quantum phase slips are shown to cause a depression of the critical temperature Tc below the mean-field value, and a temperature-dependent resistance below Tc. We compare our theoretical results to recent experimental data of Kasumov {\sl et al.} [Phys. Rev. B {\bf 68}, 214521 (2003)] for the sub-TcT_c resistance, and find good agreement with only one free fit parameter. Ropes of nanotubes therefore represent superconductors in the one-dimensional few-channel limit

    Adaptive meshless refinement schemes for RBF-PUM collocation

    Full text link
    In this paper we present an adaptive discretization technique for solving elliptic partial differential equations via a collocation radial basis function partition of unity method. In particular, we propose a new adaptive scheme based on the construction of an error indicator and a refinement algorithm, which used together turn out to be ad-hoc strategies within this framework. The performance of the adaptive meshless refinement scheme is assessed by numerical tests

    Abelian Hall Fluids and Edge States: a Conformal Field Theory Approach

    Get PDF
    We show that a Coulomb gas Vertex Operator representation of 2D Conformal Field Theory gives a complete description of abelian Hall fluids: as an euclidean theory in two space dimensions leads to the construction of the ground state wave function for planar and toroidal geometry and characterizes the spectrum of low energy excitations; as a 1+11+1 Minkowski theory gives the corresponding dynamics of the edge states. The difference between a generic Hall fluid and states of the Jain's sequences is emphasized and the presence, in the latter case, of of an U^(1)⊗SU^(n)\hat {U}(1)\otimes \hat {SU}(n) extended algebra and the consequent propagation on the edges of a single charged mode and n−1n-1 neutral modes is discussed.Comment: Latex, 22 page
    • …
    corecore