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Effective low-energy theory of superconductivity in carbon nanotube ropes

A. De Martino and R. Egger
Institut für Theoretische Physik, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany

(Dated: February 2, 2008)

We derive and analyze the low-energy theory of superconductivity in carbon nanotube ropes.
A rope is modelled as an array of metallic nanotubes, taking into account phonon-mediated as
well as Coulomb interactions, and arbitrary Cooper pair hopping amplitudes (Josephson couplings)
between different tubes. We use a systematic cumulant expansion to construct the Ginzburg-Landau
action including quantum fluctuations. The regime of validity is carefully established, and the effect
of phase slips is assessed. Quantum phase slips are shown to cause a depression of the critical
temperature Tc below the mean-field value, and a temperature-dependent resistance below Tc. We
compare our theoretical results to recent experimental data of Kasumov et al. [Phys. Rev. B 68,
214521 (2003)] for the sub-Tc resistance, and find good agreement with only one free fit parameter.
Ropes of nanotubes therefore represent superconductors in the one-dimensional few-channel limit.

PACS numbers: 73.63.Fg, 74.78.Na, 74.25.Fy

I. INTRODUCTION

Over the past decade, the unique mechanical, electri-
cal, and optical properties of carbon nanotubes, including
the potential for useful technological applications, have
created a lot of excitement [1, 2]. While many of these
properties are well understood by now, the experimental
observation of intrinsic [3, 4, 5] and anomalously strong
proximity-induced [6, 7] superconductivity continues to
pose open questions to theoretical understanding. In this
paper we present a theory of one-dimensional (1D) super-
conductivity as found in ropes of carbon nanotubes [3, 4]
and potentially in other nanowires. Ropes are 1D ma-
terials in the sense that there is only a relatively small
number of propagating channels (typically, N ≈ 10 to
100) available to electronic transport. While most other
1D materials tend to become insulating at low tempera-
tures due to the Peierls transition or as a consequence of
electron-electron interactions, nanotubes can stay metal-
lic down to very low temperatures [1]. If the repulsive
electron-electron interactions can be overcome by attrac-
tive phonon-mediated interactions, ropes of nanotubes
can then exhibit a superconducting transition.

However, due to strong 1D fluctuations, this transi-
tion is presumably rather broad, and the question of how
precisely superconductivity breaks down as the number
of propagating channels decreases has to be answered
by theory. Experimentally, the breakdown of supercon-
ductivity manifests itself as a temperature-dependent re-
sistance below the transition temperature Tc, which be-
comes more and more pronounced as the rope gets thin-
ner [4]. According to our theory, this resistance is caused
by quantum phase slips, and therefore the experimental
data published in Ref. [4] have in fact explored a regime
of 1D superconductivity with clear evidence for quan-
tum phase slip events that had not been reached before.
To the best of our knowledge, nanotube ropes represent
wires with the smallest number of propagating channels
showing intrinsic superconductivity, even when compared
to the amorphous MoGe wires of diameter ≈ 10 nm stud-

ied in Ref. [8], where still several thousand channels are
available.

We theoretically analyze superconductivity in nan-
otube ropes by starting from the microscopic model of
an array of N individual metallic single-wall nanotubes
(SWNTs) without disorder, with effectively attractive
on-tube interactions and inter-tube Josephson couplings.
A similar model has been suggested by González [9, 10].
In the absence of the Josephson couplings, each SWNT
would then correspond to a Luttinger liquid with inter-
action parameter gc+ > 1, where gc+ = 1 marks the non-
interacting limit. For simplicity, we take the same gc+ on
each SWNT. For example, for (10, 10) armchair SWNTs,
assuming good screening of the repulsive Coulomb in-
teractions, phonon exchange via a breathing mode (as
well as optical phonon modes) leads to gc+ ≈ 1.3, see
Ref. [11]. In the case of attractive interactions, the dom-
inant coupling mechanism between different SWNTs is
then given by Cooper pair hopping, while single-particle
hopping is drastically suppressed by momentum conser-
vation arguments [9, 12]. The coupling among different
SWNTs is thus encoded in a Josephson coupling matrix

Λij , where i, j = 1, . . . , N . As different nanotube chiral-
ities are randomly distributed in a rope, only 1/3 of the
SWNTs can be expected to be metallic. In general, the
Λij matrix should therefore be drawn from an appropri-
ate random distribution. We consider below one individ-
ual rope with a fixed (but unspecified) matrix, and derive
general statements valid for arbitrary Λij . In that sense,
our theory allows to capture some disorder effects, at
least qualitatively. However, since typical elastic mean
free paths in SWNTs exceed 1µm [1], disorder effects
within individual SWNTs are ignored completely. The
above reasoning leads us to the problem of N coupled
strongly correlated Luttinger liquids, where the number
of “active” chains N . 100 with reference to the experi-
ments of Ref. [4]. This is a difficult problem that neither
permits the use of classical Ginzburg-Landau (GL) the-
ory nor of the standard BCS approach, in contrast to
the situation encountered in, e.g., wide quasi-1D organic
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superconductors [13].
The approach taken in this paper is sketched next. Af-

ter a careful derivation of the coupled-chain action in
Sec. II, we proceed by introducing the appropriate or-
der parameter field. In Sec. III, we then perform a cu-
mulant expansion in this order parameter, and thereby
give a microscopic derivation of the quantum GL action,
which then allows to make further progress. We estab-
lish the temperature regime where this theory is reliable,
and then focus on the important phase fluctuations of
the order parameter field. At temperatures T well be-
low a mean-field transition temperature T 0

c , amplitude
fluctuations are shown to be massive, and hence the am-
plitude can safely be treated in mean-field theory. The
massless phase fluctuations then capture the important
physics, and we specify the resulting effective low-energy
action, valid at temperatures well below T 0

c . Based on
this action, Sec. IV explains why quantum phase slips
(QPSs) [14, 15, 16, 17] are crucial for an understand-
ing of the experimental results of Refs. [3, 4]. First, they
cause a depression of the transition temperature Tc below
the mean-field critical temperature T 0

c . Furthermore, for
T < Tc, a finite resistance R(T ) due to QPSs appears,
which exhibits approximate power-law scaling. We de-
termine the full temperature dependence of R(T < Tc)
for arbitrary rope length in Sec. V. In Sec. VI, we then
compare these results for R(T ) to the experimental data
of Ref. [4], focussing on two of their samples. Finally,
Sec. VII offers some concluding remarks. Throughout
the paper, we put ~ = kB = 1.

II. MODEL AND ORDER PARAMETER

We consider a rope consisting of N metallic SWNTs
participating in superconductivity. Experimentally, this
number can be found from the residual resistance mea-
sured as offset in the resistance when extrapolating down
to T = 0 [4]. Due to the attached normal electrodes in
any two-terminal measurement of the rope, despite of the
presence of superconductivity, there will always be a fi-
nite contact resistance Rc. Since each metallic tube con-
tributes two conduction channels, assuming good trans-
parency for the contacts between metallic tubes and the
electrodes, this is given by

Rc =
RQ

2N
, RQ = h/2e2 ≃ 12.9 kΩ. (2.1)

Extrapolation of experimental data for the resistance
R(T ) down to T → 0 within the superconducting regime
then allows to measure Rc, and hence N . Good trans-
parency of the contacts is warranted by the sputtering
technique used to fabricate and contact the suspended
rope samples in the experiments of Refs. [3, 4]. An al-
ternative way to estimate N comes from atomic force
microscopy, which allows to measure the apparent radius
of the rope, and hence yields an estimate for the total
number of tubes in the rope. On average, 1/3 of the

tubes are metallic [1], and one should obtain the same
number N from this approach. Fortunately, these two
ways of estimating N provide consistent results in most
samples [4]. Therefore the values for N used below are
expected to be reliable.

Here we always assume that phonon exchange leads
to attractive interactions overcoming the (screened)
Coulomb interactions. This assumption can be prob-
lematic in ultrathin ropes, where practically no screen-
ing arises unless there are close-by gate electrodes. For
sufficiently large rope radius, however, theoretical argu-
ments supporting this scenario have been provided in
Ref. [18]. In the absence of intra-tube disorder, then the
appropriate low-energy theory for an individual SWNT
is the Luttinger liquid (LL) model [11, 19, 20]. The
LL theory of SWNTs is usually formulated within the
Abelian bosonization approach [21]. With x = (x, τ),
where x is the spatial 1D coordinate along the tube, and
0 ≤ τ < 1/T is imaginary time, and corresponding in-
tegration measure dx = dxdτ , the action for a single
SWNT is [11, 19, 20]

SLL =

∫

dx
∑

a=c±,s±

va

2ga

[

(∂τϕa/va)2 + (∂xϕa)2
]

=

∫

dx
∑

a

vaga

2

[

(∂τθa/va)2 + (∂xθa)2
]

, (2.2)

which we take to be the same for every SWNT. Due to
the electron spin and the additional K point degener-
acy present in nanotubes [1], there are four channels,
a = c+, c−, s+, s−, corresponding to the total/relative
charge/spin modes [19, 20], with associated boson fields
ϕa(x) and dual fields θa(x) [21]. In the a = (c+, s−)
channels, the second (dual) formulation turns out to be
more convenient, while the first line of Eq. (2.2) is more
useful for a = (s+, c−). The combined effect of Coulomb
and phonon-mediated electron-electron interactions re-
sults in the interaction parameter gc+, where we assume
gc+ > 1, reflecting effectively attractive interactions [11].
In the neutral channels, there are only very weak resid-
ual interactions, and we therefore put ga6=c+ = 1. Finally,
the velocities va in Eq. (2.2) are defined as va = vF /ga,
where vF = 8 × 105 m/sec is the Fermi velocity.

Next we address the question which processes trigger
the strongest superconducting fluctuations in a nanotube
rope. This question has been addressed in Refs. [9, 10,
11], and the conclusion of these studies is that Cooper
pairs predominantly form on individual SWNTs rather
than involving electrons on different SWNTs, see, e.g.,
the last section in Ref. [11] for a detailed discussion. Fur-
thermore, the dominant intra-tube fluctuations involve
singlet (rather than triplet) Cooper pairs. The relevant
order parameter for superconductivity is then given by
[22]

O(x) =
∑

rσβ

σψr,σ,β(x)ψ−r,−σ,−β(x), (2.3)
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where ψrσβ denotes the electron field operator for a right-
or left-moving electron (r = ±) with spin σ = ± and K
point degeneracy index β = ±. In bosonized language,
this operator can be expressed as [22]

O =
1

πa0
cos[

√
πθc+] cos[

√
πϕc−] (2.4)

× cos[
√
πϕs+] cos[

√
πθs−] − (cos ↔ sin),

where we identify the UV cutoff necessary in the
bosonization scheme with the graphite lattice constant,
a0 = 0.24 nm. In what follows, we use the short-
hand notation ϕj to label all four boson fields ϕa (or
their dual fields) corresponding to the jth SWNT, where
j = 1, . . . , N .

The next step is to look at possible couplings among
the individual SWNTs. In principle, three different pro-
cesses should be taken into account, namely (i) direct
Coulomb interactions, (ii) Josephson couplings, and (iii)
single-electron hopping. The last process is strongly sup-
pressed due to the generally different chirality of adja-
cent tubes [12], and, in addition, for gc+ > 1, inter-
SWNT Coulomb interactions are irrelevant [13]. Further-
more, as discussed in detail in Ref. [11], phonon-exchange
mediated interactions between different SWNTs can al-
ways be neglected against the intra-tube interactions.
Therefore the most relevant mechanism is Josephson cou-
pling between metallic SWNTs. These couplings define a
Josephson matrix Λjk, which contains the amplitudes for
Cooper pair hopping from the jth to the kth SWNT. We
put Λjj = 0, and hence Λ is a real, symmetric, and trace-
less matrix. It therefore has only real eigenvalues Λα,
which we take in descending order, Λ1 ≥ Λ2 ≥ . . . ≥ ΛN .
Moreover, there is at least one positive and at least one
negative eigenvalue. The largest eigenvalue Λ1 will be
shown to determine the mean-field critical temperature
T 0

c below. The matrix Λ is then expressed in the corre-
sponding orthonormal eigenbasis |α〉,

Λjk =
∑

α

〈j|α〉Λα〈α|k〉, (2.5)

where 〈j|α〉 is the real orthogonal transformation from
the basis of lattice points {|j〉} to the basis {|α〉} that
diagonalizes Λ. Clearly, 〈j|α〉 = 〈α|j〉. In what follows,
we define α0 such that Λα > 0 for α < α0.

The Euclidean action of the rope is then

S =

N
∑

j=1

SLL[ϕj ] −
∑

jk

Λjk

∫

dxO∗
jOk, (2.6)

where Oj is the order parameter specified in Eq. (2.4).
The action (2.6) defines the model that is studied in the
remainder of our paper. For studies of closely related
models, see also Refs. [13, 23].

In order to decouple the Josephson term in Eq. (2.6),
we employ a Hubbard-Stratonovich transformation. To
that purpose, since the Josephson matrix has at least one

negative eigenvalue, we first express Λ in its eigenbasis,
see Eq. (2.5). The Josephson term in Eq. (2.2) is then
rewritten as

∑

jk

O∗
j ΛjkOk =

∑

α

sgn(Λα)|Λα|O∗
αOα,

where the order parameter in the |α〉 basis is

Oα ≡
∑

i

〈α|i〉Oi, O∗
α ≡

∑

i

O∗
i 〈i|α〉. (2.7)

By introducing a field ∆α(x) for each Josephson eigen-
mode [24], with (formally independent) complex con-
jugate field ∆∗

α, it is now possible to perform the
Hubbard-Stratonovich transformation following the stan-
dard procedure [25]. With integration measure D∆ =
∏

α D∆∗
αD∆α, the effective action entering the partition

function Z =
∫

D∆exp(−Seff [∆]) reads

Seff [∆] = S0[∆] +

∫

dx
∑

α

∆∗
α

1

|Λα|
∆α, (2.8)

where the action S0[∆] is formally defined via the re-
maining path integral over the boson fields ϕj ,

S0[∆] = − ln

∫ N
∏

j=1

Dϕj e
−
∑

j
SLL[ϕj] ×

× e−
∫

dx
∑

α cα(∆∗
αOα+O∗

α∆α), (2.9)

with cα = 1 for α < α0, and cα = i otherwise.

III. QUANTUM GINZBURG-LANDAU
APPROACH

A. Cumulant expansion

Clearly, closed analytical evaluation of the path inte-
gral in Eq. (2.9) is in general impossible. In order to
make progress, approximations are necessary, and in the
following we shall construct and analyze the Ginzburg-
Landau (GL) action [14, 25] for this problem. It turns
out to be essential to take into account quantum fluc-
tuations, i.e., the imaginary-time dependence of the or-
der parameter field ∆α(x, τ). In the standard (static)
Ginzburg-Landau theory, such effects are ignored.

The derivation of the GL action proceeds from a cumu-
lant expansion of Eq. (2.9) up to quartic order in the ∆α.
This is a systematic expansion in the parameter |∆|/2πT
[25], and by self-consistently computing this parameter,
one can determine the regime of validity of GL theory.
We stress that this expansion is not restricted to N ≫ 1.
In addition, for the long-wavelength low-energy regime
of primary interest here, we are entitled to perform a
gradient expansion. Using the single-chain correlation
function G(x12) = 〈O(x1)O∗(x2)〉 of the operator O in
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Eq. (2.4) with respect to the free boson action SLL, and
the connected four-point correlation function

G(4)
c (x1,x2,x3,x4) = 〈O(x1)O(x2)O∗(x3)O∗(x4)〉

− 〈O(x1)O∗(x3)〉〈O(x2)O∗(x4)〉
− 〈O(x1)O∗(x4)〉〈O(x2)O∗(x3)〉,

the cumulant-plus-gradient expansion up to quartic order
yields for the effective Lagrangian density

L[∆] =
∑

α<α0

[

C |∂x∆α|2 +D |∂τ∆α|2 (3.1)

+
(

Λ−1
α −A

)

|∆α|2
]

+ B
∑

αi<α0

fα1,α2

α3,α4
∆∗

α1
∆∗

α2
∆α3

∆α4
,

where we use the notation

fα1,α2

α3,α4
=
∑

i

〈α1|i〉〈α2|i〉〈i|α3〉〈i|α4〉.

The temperature-dependent positive coefficients
A,B,C,D are obtained as

A =

∫

dxG(x), (3.2)

B = −1

4

∫

dx1dx2dx3G
(4)
c (x1,x2,x3,x4), (3.3)

C =
1

2

∫

dxx2G(x), (3.4)

D =
1

2

∫

dx τ2G(x). (3.5)

Due to translation invariance, the integral for B does not
depend on x4. Besides temperature, these coefficients
basically depend only on the important LL interaction
parameter gc+. In particular, as it is discussed below,
for gc+ > 1, the coefficient A grows as T is lowered.
For static and uniform configurations, modes with α >
α0 never become critical. One can then safely integrate
over these modes, which leads to a renormalization of
the parameters governing the remaining modes. Such
renormalization effects are however tiny, and thus are
completely neglected in Eq. (3.1).

At this stage, it is useful to switch to an order param-
eter field defined on the jth SWNT,

∆j =
∑

α<α0

〈j|α〉∆α. (3.6)

After some algebra, the Lagrangian density (3.1) can be
written as

L[∆] =

N
∑

j=1

[

C|∂x∆j |2 +D|∂τ∆j |2 +B|∆j |4 +

+
(

Λ−1
1 −A

)

|∆j |2
]

+
∑

jk

∆∗
jVjk∆k, (3.7)

with the real, symmetric, and positive definite matrix

Vjk =
∑

α<α0

〈j|α〉
(

Λ−1
α − Λ−1

1

)

〈α|k〉. (3.8)

Notice that, strictly speaking, the fields ∆i are not all in-
dependent, because we have defined them from the sub-
set of positive modes. The transformation in Eq. (3.6)
is indeed not invertible. Nevertheless, in the following,
we treat them as formally independent. This only affects
the precise values of the Vij but does not qualitatively
change our results. The expectation value of the order
parameter field (2.4) can be expressed in terms of linear
combinations of the fields ∆j(x, τ), and hence it is indeed
justified to call ∆j a proper “order parameter field”.

Equation (3.7) specifies the full GL action, taking into
account quantum fluctuations and transverse modes for
arbitrary number N of active SWNTs. In the limit
N → ∞, and considering only static field configurations,
results similar to those of Ref. [13] are recovered. In
that limit the last term in Eq. (3.7) gives indeed the
gradient term in the transverse direction, and one ob-
tains the standard 3D GL Lagrangian. There is how-
ever an important difference, namely the starting point
of Ref. [13] is a model of Josephson-coupled 1D supercon-
ductors, whereas we start from an array of metallic chains
with gc+ > 1, where the inter-chain Josephson coupling
is crucial in stabilizing superconductivity. More similar
to ours is the model investigated in Ref. [23]. However,
in that paper, the metallic chains are assumed to have a
spin gap, which is not the case for the SWNTs in a rope
in the temperature range of interest. Furthermore, the
main focus in Ref. [23] is the competition between charge
density wave and superconducting instabilities, whereas
in our case, as discussed above, the formation of a charge
density wave is strongly suppressed by compositional dis-
order, i.e., different chiralities of adjacent tubes, and we
do not have to take the corresponding instability into
account.

B. Ginzburg-Landau coefficients

In order to make quantitative predictions, it is neces-
sary to compute the GL coefficients defined in Eqs.(3.2)-
(3.5). While this is possible in principle for the full four-
channel model (2.2), here we will instead derive the coeffi-
cients for a simpler model, where the K point degeneracy
is neglected. This leads to an effective spin-1/2 Luttinger
liquid action with interaction parameter gc (gs = 1) and
velocity vc = vF /gc (vs = vF ). Up to a prefactor of or-
der unity, the respective results can be matched onto each
other. This can be made explicit, e.g., for the coefficient
A, where we get from the full action (2.2)

A =
c

vF

(

πa0T

vc+

)(g−1

c+−1)/2

.

The proportionality constant c is found to differ from
Ã/2π2 [see Eq. (3.9) below, which follows from the spin-



5

1/2 description] only by a factor of order unity. In the
simpler model neglecting the K point degeneracy, one
then needs to take

g−1
c =

1 + g−1
c+

2
,

which gives, for gc+ = 1.3, a value of gc ≈ 1.1. This
way, all exponents of the resulting power-law correlation
functions (which are the physically relevant quantities)
in the “reduced” model are the same as in the complete
model, and only prefactors of order unity may be different
for the respective GL coefficients. The bosonized order
parameter (2.4) in the simpler model is then given by

O =
1

πa0
cos[

√
2πϕs] exp[i

√
2πθc].

Using the finite-temperature correlation functions of the
fields θc and ϕs [21],

〈θc(x)θc(0)〉 =
−1

2πgc
ln

(

vc

πa0T

∣

∣

∣

∣

sinh
πT (x+ ivcτ)

vc

∣

∣

∣

∣

)

,

〈ϕs(x)ϕs(0)〉 =
−1

2π
ln

(

vF

πa0T

∣

∣

∣

∣

sinh
πT (x+ ivF τ)

vF

∣

∣

∣

∣

)

,

and rescaling the integration variables x and τ in
Eqs. (3.2)-(3.5), explicit expressions follow in the form

A(T ) =
1

2π2vF
(πa0T/vc)

g−1
c −1Ã, (3.9)

B(T ) =
a2
0

32π4vcv2
F

(πa0T/vc)
2g−1

c −4B̃,

C(T ) =
a2
0

4π2vF
(πa0T/vc)

g−1
c −3C̃,

D(T ) =
a2
0

4π2vF v2
c

(πa0T/vc)
g−1

c −3D̃.

Dimensionless gc-dependent numbers Ã, B̃, C̃, D̃ were de-
fined as follows. With the notation z = (w, u) and

∫

dz =

∫ π

0

du

∫ ∞

−∞

dw,

we have

Ã =

∫

dz

fc(z)fs(z)
,

C̃ =

∫

dz
w2

fc(z)fs(z)
,

D̃ =

∫

dz
u2

fc(z)fs(z)
,

where functions fc,s are introduced as

fc(z) = | sinh(w + iu)|1/gc ,

fs(z) = | sinh(w/gc + iu)|.

The coefficient of the quartic term in the GL functional
is

B̃ =

∫

dz1dz2dz3

fc(z2)fc(z13)

[

4

fs(z2)fs(z13)
− fc(z1)fc(z23)

fc(z3)fc(z12)

×
(

fs(z1)fs(z23)

fs(z2)fs(z13)fs(z3)fs(z12)
+ (1 ↔ 2) + (1 ↔ 3)

)

]

with zij = (wi − wj , ui − uj). The quantity B̃ is eval-
uated using the Monte Carlo method. For gc = 1, we
first numerically reproduced the exact result B̃ = 8π2C̃
with C̃ = 7πζ(3)/4 [25]. Numerical values can then be
obtained for arbitrary gc. Numerical evaluation yields
for gc ≈ 1.1 (corresponding to gc+ = 1.3) the following
results:

Ã ≃ 17.4, B̃ ≃ 392(1), C̃ ≃ 8.15, D̃ ≃ 6.97.
(3.10)

C. Mean-field transition temperature

Since in the rope only a modest number of transverse
modes are present, a natural definition of the mean-field
critical temperature T 0

c is the temperature at which the
mode corresponding to the largest eigenvalue of Λ be-
comes critical. From Eq. (3.7), this leads to the condi-
tion A(T ) = Λ−1

1 , and hence to the mean-field critical
temperature

T 0
c =

vc

πa0

(

ÃΛ1

2π2vF

)gc/(gc−1)

, (3.11)

which exhibits a dependence on the number N of active
SWNTs in the rope through Λ1. For large N , the eigen-
value Λ1 saturates, and Eq. (3.11) approaches the bulk
transition temperature.

To provide concrete theoretical predictions for T 0
c is

difficult, since the Josephson matrix is in general un-
known, and the results for T 0

c very sensitively depend
on Λ1. Using estimates of Ref. [10] and typical N as re-
ported in Ref. [4], as an order-of-magnitude estimate, we
find T 0

c values around 0.1 to 1 K. When comparing to ex-
perimental results, Λ1 can be inferred from the actually
measured Tc, which in turn provides values in reasonable
agreement with theoretical expectations [9].

D. Low-energy theory: T < T 0

c

In what follows, we focus on temperatures T < T 0
c .

Then it is useful to employ an amplitude-phase represen-
tation of the order parameter field,

∆j(x) = |∆j |(x) exp[iφj(x)], (3.12)

where the amplitudes |∆j | are expected to be finite with
a gap for fluctuations around their mean-field value. At
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FIG. 1: Temperature dependence of ∆0/2πT versus T/T 0
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for N = 31 (open circles) and N = 253 (filled circles).

not too low temperatures, the GL action corresponding
to Eq. (3.7) is accurate (see below), and the mean-field
values follow from the saddle-point equations. Consider-
ing only static and uniform field configurations, we find
φi ≡ φ, where in principle also other (frustrated) con-
figurations with φi − φj = ±π could contribute. Such
configurations presumably correspond to maxima of the
free energy, and are ignored henceforth. The saddle-point
equations then reduce to equations for the amplitudes
alone,

∑

j

Vij |∆j | + (Λ−1
1 −A)|∆i| + 2B|∆i|3 = 0, (3.13)

whose solution yields the transverse order parameter pro-
file. Numerical study of Eq. (3.13) using a standard
Newton-Raphson root-finding algorithm then allows to
extract the profile {|∆j |} for a given Josephson matrix
Λij . We briefly discuss the solution of Eq. (3.13) for
the idealized model of a rope as a trigonal lattice exclu-
sively composed of N metallic SWNTs, where Λij = λ
for nearest neighbors (i, j), and Λij = 0 otherwise. For
this model, Fig. 1 shows the resulting average ampli-
tude ∆0 =

∑

i |∆i|/N as a function of temperature for
λ/vF = 0.1 and two values of N . Since ∆0/2πT is the
expansion parameter entering the construction of the GL
functional, and it remains small down to T ≈ T 0

c /2, we
conclude that the GL theory is self-consistently valid in
a quantitative way down to such temperature scales. In
our discussion below, GL theory turns out to be qualita-
tively useful even down to T = 0.

Fixing the amplitudes |∆j | at their mean-field val-
ues, and neglecting the massive amplitude fluctua-
tions around these values, the Lagrangian follows from

Eq. (3.7) as

L =

N
∑

j=1

µj

2π

[

cs(∂xφj)
2 + c−1

s (∂τφj)
2
]

(3.14)

+
∑

i>j

2Vij |∆i||∆j | cos(φi − φj),

with the Mooij-Schön velocity [26],

cs ≡ vc

√

C̃/D̃, (3.15)

and dimensionless phase stiffness parameters

µj = 2πC|∆j |2/cs. (3.16)

At this stage, electromagnetic potentials can be coupled
in via standard Peierls substitution rule [25], and dissipa-
tive effects due to the electromagnetic environment can
be incorporated following Ref. [17].

IV. 1D ACTION AND QUANTUM PHASE
SLIPS

A. 1D phase action

Numerical evaluation of Eq. (3.13) shows that for T
well below T 0

c , transverse fluctuations are heavily sup-
pressed. While this statement only applies to amplitude
fluctuations, one can argue that also the transverse phase
fluctuations are strongly suppressed. The basic argument
relates to the scaling dimension [in the renormalization
group (RG) sense] of the operator cos(φi − φj), which is
essentially governed by the µj . For T well below T 0

c , the
µj become large, and the cosine operators get strongly
relevant, locking the phases all together. In the low-
temperature regime of main interest below, this argu-
ment allows to substantially simplify Eq. (3.14). Then
also no detailed knowledge about the Josephson matrix
is required, because the only relevant information is es-
sentially contained in T 0

c .
Putting all phases φj = φ, we arrive at a standard

(Gaussian) 1D superconducting phase action [14],

S =
µ

2π

∫

dxdτ
[

c−1
s (∂τφ)2 + cs(∂xφ)2

]

, (4.1)

with dimensionless rigidity µ =
∑

j µj , see Eq. (3.16),

and cs as given in Eq. (3.15). Assuming GL theory to
work even down to T = 0 for the moment, and neglecting
the Vij -term in Eq. (3.13), a simple analytical estimate
follows in the form

µ(T ) = Nν
[

1 − (T/T 0
c )(gc−1)/gc

]

, (4.2)

where the number ν is

ν = 4πÃ(C̃D̃)1/2/B̃. (4.3)
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The peculiar temperature dependence of the phase stiff-
ness in Eq. (4.2), reflecting the underlying LL physics
of the individual SWNTs, is one of the main results
of this paper. In the effective spin-1/2 description em-
ployed here, using the numbers specified in Eq. (3.10)
for gc = 1.1 results in ν ≈ 4. Remarkably, at T = 0,
Eq. (4.2) coincides, up to a prefactor of order unity, with
the rigidity µ̄ obtained from standard mean-field relations
[25],

µ̄ = π2nsR
2/2m∗cs = ν̄N.

With the density of condensed electrons ns and rope ra-
dius R, this implies ν̄ ≈ vF /cs, which is of order unity.
We therefore conclude that the GL prediction (4.2) for
µ(T ) is robust and useful even outside its strict validity
regime.

The result (4.2) for the stiffness is central for the fol-
lowing discussion. The value we obtain for ν, however,
should not be taken as a very precise estimate. First, it
can be affected by factors of order unity under a full four-
channel calculation taking into account the K point de-
generacy, as this affects each of the numbers in Eq. (3.10)
by a factor of order unity. Second, uncertainties in the
parameter gc will also affect ν by a factor of order unity.
Moreover, based on the discussion in Ref. [16], one ex-
pects on general grounds that intra-SWNT disorder and
dissipative effects, both of which are not included in our
model, will effectively lead to a decrease of the parame-
ter ν entering Eq. (4.2). Therefore ν is taken below as
a fit parameter when comparing to experimental data.
Since the number of active SWNTs N can be estimated
from the residual resistance, and the transition temper-
ature Tc, see Eq. (4.7) below, can be determined from
the experimentally observed transition temperature, ν
is basically the only free remaining parameter. Fits of
our theoretical results to experimental data are then ex-
pected to yield values for ν around ν ≈ 1. This is verified
below in Sec. VI.

B. Phase slips

In the 1D situation encountered here, superconductiv-
ity can be destroyed by phase slips [14]. A phase slip
(PS) can be visualized as a process in which fluctuations
locally destroy the amplitude of the superconducting or-
der parameter, which effectively disconnects the 1D su-
perconductor into two parts. Simultaneously, the phase,
being defined only up to 2π, is allowed to “slip” by 2π
across the region where the amplitude vanishes. This
process then leads to finite dissipation in the supercon-
ducting wire via the Josephson effect. Depending on tem-
perature, phase slips can be produced either by thermal
or by quantum fluctuations. In the first case, which is
commonly realized very near the critical temperature, we
have a thermally activated phase slip (TAPS). At lower
temperature, the quantum tunneling mechanism domi-
nates, and one speaks of a quantum phase slip (QPS).

For a textbook description of quantum phase slips, see
Ref. [27]. Below we demonstrate that in superconduct-
ing ropes, only QPSs are expected to play a prominent
role.

A QPS is a topological vortex-like excitation of the su-
perconducting phase field φ(x, τ) that solves the equa-
tion of motion for the action (4.1) with a singularity
at the core, where superconducting order is locally de-
stroyed and a phase cannot be defined. Defining a ther-
mal lengthscale as

LT = cs/πT, (4.4)

for rope length L → ∞ and LT → ∞, a QPS with core
at (xi, τi) and winding number ki = ±1 (higher winding
numbers are irrelevant) is given by [27]

φ(x, τ) = ki arctan

[

cs(τ − τi)

(x− xi)

]

, (4.5)

where the finite L,LT solution follows by conformal
transformation [17]. The action of a QPS consists of
two terms, one associated with the local loss of conden-
sation energy, the core action Sc, and the other with the
vortex strain energy. While a detailed computation of Sc

requires a microscopic description of the dynamics inside
the vortex core [16], a simple qualitative argument is able
to predict an order-of-magnitude estimate Sc ≈ µ/2 [27].

This result allows us to assess the relative contribu-
tion of the TAPS and QPS mechanisms. The produc-
tion rate for the creation of one vortex is [16] γQPS ≈
ScLcs

κ exp(−Sc), where κ is the core size. Within expo-
nential accuracy, comparing this formula to the respec-
tive standard TAPS rate expression [14], the crossover
temperature from TAPS- to QPS-dominated behavior
is T ∗

PS = 2∆F/Nν, with activation barrier ∆F . Us-
ing results of Ref. [23], we estimate the latter as ∆F =

8
√

2R(gc)NT
0
c /3, with dimensionless coefficient R(gc) of

order unity. Finally, this implies T ∗
PS ≈ T 0

c . Since the
true transition temperature Tc < T 0

c , see below, in the
temperature regime T < Tc, the influence of a TAPS can
safely be neglected against the QPS.

The generalization to many QPSs then leads to the
standard picture of a Coulomb gas of charges ki = ±1,
with fugacity y = e−Sc , total charge zero, and log-
arithmic interactions [25, 27]. The partition function
Z = ZGZV contains a regular factor ZG and the vor-
tex contribution

ZV =

∞
∑

n=0

y2n

(n!)2

∫
∏2n

m=1 drm

(csκ2)2n

∑

{k}

eµ
∑

i6=j kikj ln(rij/κ).

(4.6)
This model undergoes a Berezinski-Kosterlitz-Thouless
transition driven by the nucleation of vortices, here cor-
responding to a transition from a phase µ > µ∗, where
QPSs are confined into neutral pairs and the rope forms a
1D superconductor with finite phase stiffness and quasi-
long-range order, to a phase µ < µ∗ where QPSs prolif-
erate. In that phase, vortices are deconfined and destroy
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FIG. 2: Temperature-dependent resistance R(T < Tc) pre-
dicted by Eq. (5.4) for ν = 1 and different N . The smaller
is N , the broader is the transition. From the leftmost to the
rightmost curve, N = 4, 7, 19, 37, 61, 91, 127, 169, 217.

the phase stiffness, thereby producing normal behavior,
where “normal” does of course not imply Fermi-liquid be-
havior. The phase boundary is located at µ∗ = 2+4πy ≃
2. The true transition temperature Tc is therefore not the
mean-field transition temperature T 0

c , but follows from
the condition µ(Tc) = µ∗. Putting µ∗ = 2, Eq. (4.2)
yields

Tc/T
0
c = [1 − 2/Nν]

gc/(gc−1)
. (4.7)

This Tc depression is quite sizeable for N . 100. To give
concrete numbers, taking ν = 1, for N = 25, 50, and 100,
the ratio Tc/T

0
c equals 0.40, 0.63, and 0.80, respectively.

QPSs also have an important and observable effect in the
superconducting regime, as will be discussed in the next
section.

V. RESISTANCE BELOW Tc

A phase slip produces finite dissipation through the
Josephson effect, and therefore introduces a finite resis-
tance even in the superconducting state, T < Tc. The
QPS-induced linear resistance R(T ) = V/I for T < Tc

can be computed perturbatively in the QPS fugacity y
[15]. For that purpose, we imagine that one imposes a
small current I to flow through the rope. The presence
of QPSs implies that a voltage drop V occurs, which is
related to the average change in phase,

V =
〈φ̇〉
2e

=
π

e
[Γ(I) − Γ(−I)],

where Γ(±I) is the rate for a phase slip by ±2π [15].
This rate can be obtained following Langer [28] as the
imaginary part acquired by the free energy F (I) under
an appropriate analytic continuation,

Γ(±I) = −2 ImF (±I). (5.1)

We only consider the contribution of a single pair of
QPSs, i.e., compute R(T ) to second order in y. Expand-
ing Eq. (4.6) to order y2, the free energy at this order
reads

F = −Ly
2c2s
κ4

∫ 1/T

0

dτ

∫ L/2

−L/2

dx eǫτ−2µgE(x,τ), (5.2)

where the vortex-vortex interaction gE(x, τ) only de-
pends on relative coordinates, and ǫ = π~I/e. The con-
tribution FG to the free energy due to regular configu-
rations can be dropped, because it does not acquire an
imaginary part under the analytic continuation. We now
perform the analytic continuation τ → it, resulting in
[see Ref. [29] for details]

ImF = −Ly
2c2s

2κ4

∫ L/2

−L/2

dx

∫ ∞

−∞

dt eiǫt−2µg(x,t), (5.3)

where g(x, t) ≡ gE(x, τ → it). The rate Γ(ǫ) then follows
for L,LT ≫ κ but arbitrary L/LT in the form

Γ(ǫ) =
c2sLy

2

κ4

∫ L/2

−L/2

dx

∫ ∞

−∞

dt eiǫt−µ[g̃(t+x/cs)+g̃(t−x/cs)],

where

g̃(t) = ln [(LT /κ) sinh(πT |t|)] + i(π/2)sgn(t).

Analyticity of gE(x, τ) in the strip 0 ≤ τ ≤ 1/T also
leads to the standard detailed balance relation [29],

Γ(−ǫ) = e−ǫ/T Γ(ǫ).

In order to explicitly evaluate the rate Γ(ǫ) for arbitrary
L/LT , we now replace the boundaries for the x-integral
by a soft exponential cutoff, switch to integration vari-
ables t′ = t−x/cs and t′′ = t+x/cs, and use the auxiliary
relation

e−cs|t
′′−t′|/L =

cs
πL

∫ ∞

−∞

ds
e−is(t′′−t′)

s2 + (cs/L)2
.

The t′, t′′ time integrations then decouple, and it is
straightforward to carry them out. Finally some alge-
bra yields the linear resistance in the form

R(T )

RQ
=

(

πyΓ(µ/2)

Γ(µ/2 + 1/2)

)2
πL

2κ

(

LT

κ

)3−2µ

(5.4)

×
∫ ∞

0

du
2/π

1 + u2

∣

∣

∣

∣

Γ(µ/2 + iuLT/2L)

Γ(µ/2)

∣

∣

∣

∣

4

,

in units of the resistance quantum RQ defined in
Eq. (2.1).

For L/LT ≫ 1, the u-integral approaches unity, and
hence R ∝ T 2µ−3, while for L/LT ≪ 1, dimensional scal-
ing arguments give R ∝ T 2µ−2. In Refs. [3, 4], typical
lengths were L ≈ 1 µm, which puts one into the crossover
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FIG. 3: Temperature dependence of the resistance below
Tc for superconducting rope R2 experimentally studied in
Ref. [4]. Open squares denote experimental data (with sub-
tracted residual resistance), the curve is the theoretical result.

regime LT ≈ L. While the quoted power laws have al-
ready been reported for diffusive wires [15], Eq. (5.4) de-
scribes the full crossover for arbitrary L/LT , and applies
to strongly correlated ladder compounds such as nan-
otube ropes. It predicts that the transition gets signifi-
cantly broader upon decreasing the number of tubes in
the rope. This is shown in Fig. 2, where the theoreti-
cal results for the resistance is plotted for various N at
ν = 1. Note that Eq. (5.4) is a perturbative result in the
fugacity, and it is expected to break down close to Tc, see
below. In the next section we directly compare Eq. (5.4)
to experimental data obtained by Kasumov et al. [4].

VI. COMPARISON TO EXPERIMENTAL DATA

Here we discuss how the prediction for the
temperature-dependent resistance R(T ) below Tc as
given in Eq. (5.4) compares to the experimental results
for R(T ) published in Ref. [4]. More aspects of this com-
parison will be given elsewhere [30]. The experimental
data in Ref. [4] were obtained from two-terminal mea-
surements of ropes suspended between normal electrodes.
Due to the presence of the contacts, the residual resis-
tance (2.1) survives down to T = 0 even when the rope
exhibits a superconducting transition. Extrapolation of
experimental results for R(T ) yields Rc, which then al-
lows to infer the number N in the respective sample
from Eq. (2.1). This resistance Rc has to be subtracted
from experimental data to allow for a comparison with
Eq. (5.4), where no contact resistance is taken into ac-
count.

In Figs. 3 and 4, experimental resistance curves (af-
ter this subtraction) for the samples named R2 and R4
in Ref. [4] are plotted versus the prediction of Eq. (5.4).
For sample R2, we find Rc = 74 Ω corresponding to
NR2 = 87, while for sample R4, the subtracted resis-

tance is Rc = 150 Ω, leading to NR4 = 43. We then take
these N values when computing the respective theoreti-
cal curves. The experimentally determined temperature
T ∗ locates the onset of the transition [4], and is identified
with the true transition temperature Tc in Eq. (4.7). It
is therefore also not a free parameter. Note that thereby
the eigenvalue Λ1 of the Josephson matrix has been de-
termined. In the absence of detailed knowledge about
the Josephson matrix, it is fortunate that our result for
R(T )/R(Tc) following from Eqs. (5.4) and (4.2) does not
require more information about Λ besides the largest
eigenvalue. Given the estimate gc+ = 1.3 [11], the com-
parison of Eq. (5.4) to experimental data then allows only
one free fit parameter, namely ν. According to our dis-
cussion in Sec. IVA, the fit is expected to yield values
ν ≈ 1.

The best fit to the low-temperature experimental
curves for R(T ) yields ν = 0.75 for sample R2, see Fig. 3,
and ν = 0.16 for sample R4, respectively. The agreement
between experiment and theory is excellent for sample
R2. For sample R4, the optimal ν is slightly smaller
than expected, which indicates that dissipative processes
may be more important in that sample. Nevertheless,
for both samples, the low-temperature resistance agrees
quite well, with only one free fit parameter that is found
to be of order unity as expected. Whereas the agree-
ment between theoretical and experimental curves ap-
pears then quite satisfactory in the low-temperature re-
gion, our predictions clearly deviate in the region near
Tc. This is not surprising, because our expression for
R(T ) in Eq. (5.4) is perturbative in the QPS fugacity. It
is then expected to break down close to Tc, where QPSs
proliferate and the approximation of a very dilute gas of
QPS pairs, on which our calculation is based, is not valid
anymore. As a consequence, also the saturation observed
experimentally above T ∗ is not captured.

We note that it is an interesting challenge to compute
the finite resistance in the normal phase at Tc < T < T 0

c ,
where the saturation should be caused by QPS and TAPS
proliferation. For temperatures T > T 0

c , superconduct-
ing correlations can be neglected, and the resistance
should then be dominated by phonon backscattering and
disorder effects. Nevertheless, we believe that the agree-
ment between the theoretical resistance result (5.4) and
experimental data at low temperatures shown in Figs. 3
and 4, given the complexity of this system, is rather sat-
isfactory. More importantly, this comparison provides
strong evidence for the presence of quantum phase slips
in superconducting nanotube ropes.

VII. CONCLUSIONS

According to our discussion above, the intrinsic super-
conductivity observed in ropes of SNWTs [3, 4] repre-
sents a remarkable phenomenon, where it has been pos-
sible to experimentally probe the extreme 1D limit of a
superconductor. In this paper, we have formulated a the-
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FIG. 4: Same as Fig. 3, but for sample R4 experimentally
studied in Ref. [4].

ory for this phenomenon, based on a model of metallic
SWNTs with attractive intra-tube interactions and ar-
bitrary inter-tube Josephson couplings. The analysis of
this model leads to an effective Ginzburg-Landau action,
whose coefficients can be expressed in terms of parame-
ters entering the microscopic description of the rope. In
order to get the correct low-energy dynamics, it is crucial
to include quantum fluctuations of the order parameter.

Based on the resulting low-energy action for the phase
fluctuations, we have shown that quantum phase slips
produce a depression of the critical temperature. More
importantly, the temperature dependence of the linear
resistance experimentally observed below the transition
temperature can be accounted for by considering the un-
derlying LL physics and the effect of quantum phase
slips. Despite some admittedly crude approximations,
like the neglect of intra-tube disorder and dissipation ef-
fects inside the vortex core, the comparison of experimen-
tal curves and theoretical predictions, in particular in the
low-temperature region, strongly suggests that the resis-
tive process is indeed dominated by quantum phase slips.
Our theory also suggests that, if repulsive Coulomb inter-
actions can be efficiently screened off, superconductivity
may survive down to only very few transverse channels
in clean nanotube ropes.
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[17] H.P. Büchler, V.B. Geshkenbein, and G. Blatter, Phys.
Rev. Lett. 92, 067007 (2004).

[18] J. González, Eur. Phys. J. B 36, 317 (2003).
[19] R. Egger and A.O. Gogolin, Phys. Rev. Lett. 79, 5082

(1997).
[20] C. Kane, L. Balents, and M.P.A. Fisher, Phys. Rev. Lett.

79, 5086 (1997).
[21] A.O. Gogolin, A.A. Nersesyan, and A.M. Tsvelik,

Bosonization and Strongly Correlated Systems (Cam-
bridge University Press, 1998).

[22] R. Egger and A.O. Gogolin, Eur. Phys. J B 3, 281 (1998).
[23] S.T. Carr and A.M. Tsvelik, Phys. Rev. B 65, 195121

(2002).
[24] Modes with Λα = 0 have to be excluded in the transfor-

mation. All α summations have to be understood in this
sense. Note that such modes never cause critical behavior
in any case.

[25] N. Nagaosa, Quantum Field Theory in Condensed Mat-

ter Physics (Springer Verlag, 1999).
[26] J. E. Mooij and G. Schön, Phys. Rev. Lett. 55, 114

(1985).
[27] P.M. Chaikin and T. Lubensky, Principles of Condensed

Matter Physics (Cambridge University Press, 2000).



11

[28] J.S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967).
[29] U. Weiss, Quantum Dissipative Systems, 2nd. ed. (World

Scientific, Singapore, 1999).

[30] M. Ferrier, A. De Martino, A. Kasumov, R. Deblock,
S. Gueron, R. Egger, and H. Bouchiat, invited review,
submitted to Solid State Communications.


