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Landau levels, edge states, and strained magnetic waveguides in graphene monolayers

with enhanced spin-orbit interaction
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The electronic properties of a graphene monolayer in a magnetic and a strain-induced pseudo-
magnetic field are studied in the presence of spin-orbit interactions (SOI) that are artificially en-
hanced, e.g., by suitable adatom deposition. For the homogeneous case, we provide analytical results
for the Landau level eigenstates for arbitrary intrinsic and Rashba SOI, including also the Zeeman
field. The edge states in a semi-infinite geometry are studied in the absence of the Rashba term.
For a critical value of the magnetic field, we find a quantum phase transition separating two phases
with spin-filtered helical edge states at the Dirac point. These phases have opposite spin current di-
rection. We also discuss strained magnetic waveguides with inhomogeneous field profiles that allow
for chiral snake orbits. Such waveguides are practically immune to disorder-induced backscattering,
and the SOI provides non-trivial spin texture to these modes.

PACS numbers: 73.22.Pr, 73.23.-b, 72.80.Vp

I. INTRODUCTION

The physics of graphene monolayers continues to at-
tract a lot of attention and to provide a rich source of
interesting phenomena.1–3 By studying the effects of the
spin-orbit interaction (SOI) in a graphene layer, where
symmetry allows for an “intrinsic” (∆) and a “Rashba”
(λ) term in the SOI, Kane and Mele4 made a remark-
able discovery that sparked the exciting field of topo-
logical insulators:5 For ∆ > λ/2, there is a bulk gap
with topologically protected edge states near the bound-
ary of the sample. This is similar to the quantum
Hall (QH) effect but happens in a time-reversal invari-
ant system. The resulting “quantum spin Hall” (QSH)
edge states form a one-dimensional (1D) helical liquid,
where right- and left-movers have opposite spin polar-
ization and spin-independent impurity backscattering is
strongly suppressed. The QSH state has been observed
in HgTe quantum wells,6 but several works7–9 showed
that ∆ is probably too small to allow for the experi-
mental verification of this novel phase of matter in pris-
tine graphene. Consequently, other material classes have
been employed to demonstrate that topologically insu-
lating behavior is indeed possible.5 However, graphene
experiments10,11 have also demonstrated that the Rashba
coupling λ can be increased significantly by depositing
graphene on Ni surfaces. Moreover, very recent theoret-
ical predictions12 suggest that already moderate indium
or thallium adatom deposition will dramatically enhance
∆ by several orders of magnitude. By using suitable
adatoms, it is expected that in the near future both SOI
parameters ∆ and λ can be varied over a wide range in
experimentally accessible setups.

In view of these developments, in this paper we study
the electronic properties of a graphene monolayer with
artificially enhanced SOI. Besides the SOI, we include
piecewise constant electrostatic potentials, orbital and
Zeeman magnetic fields, and strain-induced vector poten-

tials. The latter cause pseudo-magnetic fields but do not
violate time reversal invariance; for a review, see Ref. 13.
While the interplay of the Rashba term λ with (pseudo-
)magnetic fields in graphene has been studied in several
theory works before,14–16 the intrinsic SOI ∆ did not re-
ceive much attention so far. However, the transmission
properties of graphene’s Dirac-Weyl (DW) quasiparticles
through barriers with arbitrary SOI have been studied
recently17,18 in the absence of (pseudo-)magnetic fields.

The structure of this article is as follows. In Sec. II
we formulate the model and construct the general solu-
tion for piecewise constant fields. On top of the orbital
magnetic field, we allow for arbitrary SOI parameters ∆
and λ, Zeeman energy b, and we also take into account
aspects of strain-induced fields. The homogeneous case
is addressed in Sec. III, where we determine the Landau
level states for this problem in closed and explicit form.
In particular, the fate of the zero modes residing at the
Dirac point (energy E = 0) will be discussed in the pres-
ence of the SOI. Our results also apply to the case of
a strain-induced homogeneous pseudo-magnetic field.19

Next, in Sec. IV we study edge states near the boundary
of a semi-infinite sample for vanishing Rashba coupling,
λ = 0. For weak magnetic fields, one then expects to have
helical (spin-filtered) QSH edge states. Interestingly, at
the Dirac point, upon increasing the magnetic field, we
find that a quantum phase transition takes place between
the QSH phase and a second QSH-like phase with spin-
filtered edge states, considered previously by Abanin et

al.,20 where the spin current direction is reversed. This
spin current reversal should allow for an experimental de-
tection of this quantum phase transition, on top of the
obvious consequences for QH quantization rules.20–23 In
Sec. V, we turn to a mesoscopic waveguide geometry,
where a suitable inhomogeneous magnetic field (or ex-
change field produced by lithographically deposited fer-
romagnetic films) defines the waveguide.24–33 We show
that the SOI parameters ∆ and λ give rise to interesting
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spin texture of the resulting propagating chiral states in
such a waveguide. Finally, we conclude in Sec. VI.

II. MODEL AND GENERAL SOLUTION

A. Model

Unless many-body effects are of crucial importance,
the low-energy electronic properties of a graphene mono-
layer are well captured by two copies of a DW Hamilto-
nian supplemented with various terms describing SOI,
(pseudo-)magnetic fields, and electrostatic potentials.3

The wavefunction corresponds to a spinor comprising
eight components,

Ψ(x, y) =























ΨA↑K

ΨB↑K

ΨA↓K

ΨB↓K

ΨA↑K′

ΨB↑K′

ΨA↓K′

ΨB↓K′























(x, y) = eikxx

(

φK(y)

φK
′

(y)

)

. (2.1)

The Pauli matrices σi=x,y,z below act in sublattice space
corresponding to the two carbon atoms (A/B) in the ba-
sis of the honeycomb lattice, while Pauli matrices si act
in physical spin (↑, ↓) space. Finally, the valley degree of
freedom (K,K ′) corresponds to the two K points3 and
Pauli matrices τi refer to that space. Specifically, we here
consider models where the mentioned extra terms in the
Hamiltonian are piecewise constant along the y-direction
and homogeneous along the x-axis. Consequently, the
momentum px is conserved, and we have an effectively
1D problem in terms of the four-spinors φK,K′

(y). The
orbital magnetic field Bz = ǫB (with ǫ = ± and B ≥ 0) is
expressed in terms of the vector potential A(x, y), where
we choose the gauge

Ax = −ǫB(y − c0), Ay = 0. (2.2)

Inclusion of the constant c0 is necessary when connecting
regions with different magnetic fields in order to make Ax

continuous. Assuming that the magnetic field is perpen-
dicular to the graphene sheet, the Zeeman field couples to
sz and determines the coupling constant b = gsµBB/2 ,
where gs ≈ 2 is the Landé factor and µB denotes the Bohr
magneton. The full Hamiltonian then reads3 (e > 0)

H = vF

[

σxτz

(

px +
e

c
(Ax + τzAx)

)

+ σy

(

py +
e

c
τzAy

)]

+ V + ǫbsz +
λ

2
(σxsyτz − σysx) + ∆σzszτz. (2.3)

In Eq. (2.3) px = ~kx is the conserved momentum in
the x-direction, while py = −i~∂y is still an operator.
The constant c0 in Eq. (2.2) can be included by shifting
px, and we suppose that this shift has been carried out
in the remainder of this section. The Fermi velocity is

vF ≈ 106 m/s, while the SOI couplings ∆ and λ (both
are assumed non-negative) correspond to the intrinsic
and Rashba terms, respectively. In wrinkled graphene
sheets the coupling λ also captures curvature effects.7 A
constant electrostatic potential, V , has been included in
Eq. (2.3). Strain-induced forces13 lead to a renormal-
ization of V as well as to the appearance of an effective
vector potential,

(

Ax

Ay

)

= κ

(

uxx − uyy
−2uxy

)

,

expressed in terms of the in-plane strain tensor uij , see
Ref. 34.The constant κ can be found in Refs. 13,35. As
discussed by Fogler et al.,36 in many cases it is sufficient
to consider a piecewise constant strain configuration. As-
suming that the x-axis is oriented along the zig-zag di-
rection, strain causes only a finite but constant Ax while
Ay = 0. This can be taken into account by simply shift-
ing px in this region. Below we suppose that also this
shift has already been done. Estimates for Ax in terms
of physical quantities can be found in Refs. 13,36. The
resulting pseudo-magnetic field then consists of δ-barriers
at the interfaces between regions of different strain. An
alternative situation captured by our model is given by
a constant pseudo-magnetic field, whose practical real-
ization has been described recently.19 In that case, Ax

is formally identical to Ax in Eq. (2.2). Unless specified
explicitly, we consider the case of constant Ax below.

B. Symmetries

Let us briefly comment on the symmetries of this
Hamiltonian. In position representation, the time re-
versal transformation is effected by the antiunitary
operator37

T = τx(−isy)C (2.4)

with complex conjugation operator C and implies the re-
lation

T Hǫ(kx)T −1 = H−ǫ(−kx) (2.5)

for H in Eq. (2.3) with ǫ = sgn(Bz). Since H is diagonal
in valley space, Eq. (2.5) implies that the Hamiltonian

HK′

near the K ′ point is related to HK by the relation

HK′

−ǫ (−kx) = sy[H
K
ǫ (kx)]

∗sy. (2.6)

By solving the eigenvalue problem at the K point, we
could thus obtain the eigenstates at K ′ via Eq. (2.6). A
simpler way to achieve this goal is sketched at the end of
this subsection.
From now on we switch to dimensionless quantities by

measuring all energies in units of the cyclotron energy
~ωc, where we define ωc = vF /ℓB. The magnetic length
ℓB = (~c/2eB)1/2 sets the unit of length. A field of 1
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Tesla corresponds to ~ωc ≈ 36 meV and ℓB ≈ 18 nm.
Measuring B in units of Tesla, we get for the Zeeman
coupling b = (gsµBB/2)/~ωc ≈ 1.6× 10−3

√

B[T]. With
the dimensionless coordinate

η = y − 2ǫkx (2.7)

and the auxiliary quantities

µ± = E − V + b±∆, ν± = E − V − b±∆, (2.8)

we find the representation

E −HK
ǫ=+1 =









ν− a 0 0
a† ν+ iλ 0
0 −iλ µ+ a
0 0 a† µ−









, (2.9)

E −HK
ǫ=−1 =









µ− −a† 0 0
−a µ+ iλ 0
0 −iλ ν+ −a†
0 0 −a ν−









.

Here we introduced the standard ladder operators

a =
η

2
+ ∂η, a† =

η

2
− ∂η, (2.10)

with [a, a†] = 1.
According to the above discussion, eigenstates at the

K ′ point for ǫ = ±1 could be obtained from the corre-
sponding solutions at the K point with ǫ = ∓1. Alterna-
tively, there is a simpler way to obtain the K ′ states as
follows. The 1D Hamiltonians HK,K′

(for given ǫ) can
be written in dimensionless notation as

HK = − ǫη
2
σx − iσy∂η +∆σzsz +

+
λ

2
(σxsy − σysx) +Axσx + ǫbsz,

HK′

=
ǫη

2
σx − iσy∂η −∆σzsz +

+
λ

2
(−σxsy − σysx) +Axσx + ǫbsz.

Both Hamiltonians are therefore related by the transfor-
mation

HK′

(Ax) = σyH
K(−Ax)σy, (2.11)

without the need to invert the real magnetic field since
this is not a time reversal transformation. As a conse-
quence, the 1D eigenstates φK

′

(η) follow from the so-
lutions at the K point by multiplying with −iσy and
inverting the sign of Ax,

φK
′

(η,Ax) = −iσyφK(η,−Ax). (2.12)

C. General solution

We now determine the spinors φ solving the DW equa-
tion for energy E,

(E −HK)φ(η) = 0, (2.13)

with E −HK in Eq. (2.9). We construct the solution to
Eq. (2.13) within a spatial region where all parameters
(magnetic fields, strain, SOI, etc.) are constant but arbi-
trary. This general solution will be employed in later sec-
tions, where specific geometries are considered by match-
ing wavefunctions in adjacent parts. Now Eq. (2.13) is a
system of four coupled linear differential equations that
admits precisely four linearly independent solutions de-
rived in App. A. In order to solve Eq. (2.13), it is instruc-
tive to realize that the parabolic cylinder functions,38,39

Dp(z), obey the recurrence relations

aDp(η) = pDp−1(η), a†Dp(η) = Dp+1(η), (2.14)

with the ladder operators a, a† in Eq. (2.10). Similar
relations for η → −η or η → iη are given in App. A. For
given energy E, the order p can only take one of the two
values

p =
1

2

[

µ+ ν − 1±
√

(µ+ ν − 1)2 + 4λ2µ−ν−

]

, (2.15)

where we define [cf. Eq. (2.8)]

µ = µ+µ− = (E − V + b)2 −∆2, (2.16)

ν = ν+ν− = (E − V − b)2 −∆2.

For each of the two possible values for p, we then have
two basis states, φp and ψp, which results in four lin-
early independent solutions. We show in App. A that
the (unnormalized) solution φp can be chosen as

φǫ=+1,p =









pDp−1(−η)
ν−Dp(−η)

i(ν−p)
λ Dp(−η)

i(ν−p)
λµ−

Dp+1(−η)









, (2.17)

φǫ=−1,p =









Dp+1(η)
µ−Dp(η)

i(µ−p−1)
λ Dp(η)

i(µ−p−1)
λµ−

pDp−1(η)









,

while ψp is taken in the form

ψǫ=+1,p =









−iD−p(−iη)
ν−D−p−1(−iη)

i(ν−p)
λ D−p−1(−iη)

− (ν−p)(p+1)
λµ−

D−p−2(−iη)









, (2.18)

ψǫ=−1,p =









i(p+ 1)D−p−2(iη)
µ−D−p−1(iη)

i(µ−p−1)
λ D−p−1(iη)

µ−p−1
λµ−

D−p(iη)









.

Next, we analyze the spatially homogeneous case.

III. HOMOGENEOUS CASE

In this section we study an unstrained infinitely ex-
tended graphene monolayer where the magnetic field
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Bz = B (we assume ǫ = +1) and the SOI parameters ∆
and λ are constant everywhere. (The electrostatic poten-
tial V just shifts all states and is set to zero here.) We are
thus concerned with the relativistic Landau level struc-
ture for graphene in the presence of arbitrary SOI param-
eters, including also the Zeeman field b. This problem
was solved for the special case ∆ = b = 0 by Rashba,16

see also Ref. 15, and below we reproduce and general-
ize this solution. We focus on the K point only, since
the spectrum and the eigenstates at the K ′ point follow
from Eqs. (2.6) and (2.12). We also allow for a constant
pseudo-magnetic field. When only an orbital or a strain-
induced pseudo-magnetic field is present but not both,
each energy level below has an additional twofold valley
degeneracy.
In the homogeneous case, normalizability of the spinors

φp [Eq. (2.17)] can only be satisfied if the order p is con-
strained to integer values p = −1, 0, 1, 2, . . ., while the
ψp [Eq. (2.18)] are not normalizable. Solutions for the
homogeneous problem thus have to be constructed using
φp only. Expressing the energy E (we remind the reader
that here all energy scales are measured in units of ~ωc)
in terms of p [Eq. (2.15)], the sought (valley-degenerate)
Landau levels follow as the roots of the quartic equation

[

(E + b)2 − (p+ 1 +∆2)
] [

(E − b)2 − (p+∆2)
]

=

= λ2
[

(E −∆)2 − b2
]

. (3.1)

For b = λ = ∆ = 0 this recovers the standard rela-
tivistic spin-degenerate Landau levels,3 E±,n = ±√

n for
n = 1, 2, 3, . . . (with n = p for spin up and n = p + 1
for spin down states), plus a spin-degenerate zero mode
E0 = 0 (for p = 0,−1). We notice from Eq. (3.1) that for
b = 0, the combination of ∆ and λ breaks particle-hole
symmetry, while the two couplings individually keep it.
Furthermore, zero-energy solutions are generally not pos-
sible except for special fine-tuned parameters. Eq. (3.1)
also predicts that if E is a solution for the parame-
ter set {p, λ,∆, b} then −E is a solution for the set
{p, λ,−∆,−b}. The φp(η) thus represent Landau level
states in the presence of SOI and Zeeman coupling. The
normalization constant 1/

√

Np, entering as a prefactor
in Eq. (2.17), can be computed analytically since Dp(z)
can be expressed in terms of Hermite functions for integer
p.39 For p = 1, 2, 3, . . ., we find

Np =

√
2π p!

(λµ−)2

[

(λµ−)
2p+ (3.2)

+µ2
−(λ

2ν2− + (ν − p)2) + (ν − p)2(p+ 1)
]

.

Remarkably, for p = −1, we find the exact normalized
state for arbitrary system parameters,

φ−1(η) =
1

(2π)1/4







0
0
0

D0(−η)






, (3.3)

with the eigenvalue

Ep=−1 = ∆− b. (3.4)

This unique admissible eigenstate for p = −1 is endowed
with full spin polarization in the ↓ direction. For p =
0, the secular equation (3.1) becomes effectively a cubic
equation: the solution E = ∆ + b (i.e., ν− = 0) does
not correspond to any admissible eigenstate. The three
allowed states are described by

φp=0(η) =
1√N0







0
λµ−ν−D0(−η)
iµ−νD0(−η)
iνD1(−η)






, (3.5)

N0 =
√
2π

[

ν2(1 + µ2
−) + λ2µ2

−ν
2
−

]

.

This includes a “zero-mode” partner of the p = −1 state,
plus a pair of states obtained by mixing the spin-up n = 0
and spin-down n = ±1 Landau orbitals via the Rashba
SOI.

A. Rashba SOI only

For ∆ = b = 0 but allowing for a finite Rashba SOI
parameter λ, Eq. (3.1) admits a simple solution, previ-
ously given in Ref. 16 and briefly summarized here for
completeness. For p = −1 we have the solution (3.3),
which now is a zero mode, while for p = 0, 1, 2, . . ., the
eigenenergies are given by

Ep,α,β = α

[

1 + λ2

2
+ p+ (3.6)

+ β

√

(

1 + λ2

2
+ p

)2

− p(p+ 1)

]1/2

,

with α, β = ±. According to our discussion above, here
E0,±,− = 0 should be counted only once, with eigen-
state φT0, ,− ∝ (0, D0(−η), 0,−iλD1(−η)), while E0,±,+ =

±
√
1 + λ2 correspond to a particle/hole pair of first Lan-

dau levels modified by the Rashba SOI, with eigenstates
φT0,±,+ ∝ (0, λD0(−η),±i

√
1 + λ2D0(−η), iD1(−η)). We

thus get precisely two zero-energy states.
For small λ, we find the expansion

Ep−1,±,+ = ±(1 + λ2/2)
√
p+O(λ4),

Ep,±,− = ±(1− λ2/2)
√
p+O(λ4),

which shows that the states Ep,±,+ and Ep+1,±,−, which
form a degenerate Landau level for λ = 0, are split by a
finite λ.

B. Intrinsic SOI only

Let us next consider the case λ = 0, where one has a
QSH phase4 for B = 0 and ∆ 6= 0. Now the Hamiltonian
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is block diagonal in spin space and the eigenstates be-
come quite simple even for finite Zeeman coupling, since

we can effectively work with the bi-spinors φK,K′

↑,↓ (y) for

spin s =↑ / ↓= ±. We easily obtain the (unnormalized)
eigenstates with p ∈ N0 in the form40

φKp,±,s(η) =

(

νp,±,sDp−1(−η)
Dp(−η)

)

, (3.7)

φK
′

p,±,s(y) =

(

−Dp(−η)
νp,±,sDp−1(−η)

)

,

where the eigenenergies follow from Eq. (3.1),

Ep,±,s = sb±
√

p+∆2. (3.8)

We employ the notation

νp,±,s ≡ Ep,±,s − E0,−s,s = ±
√

p+∆2 − s∆. (3.9)

For p = 0, the second index in φp,±,s and Ep,±,s should
be replaced by−s, i.e., there is only one solution for given
spin (and valley). Note that E0,+,↓ in the present nota-
tion corresponds40 to the solution (3.3). When b = 0,
interestingly enough, ∆ does not lift the spin degeneracy
of the Landau levels except for the zero mode (p = 0).41

A Zeeman term with b = ∆ restores a true doubly-
degenerate zero-energy state for p = 0 again. In Sec. IV
we show that this implies a quantum phase transition.

C. General case

Although the quartic equation (3.1) can be solved an-
alytically when both SOI couplings are finite, the result-

ing expressions are not illuminating and too lengthy to
be quoted here. Only the p = −1 state in Eq. (3.3) re-
mains exact for arbitrary parameters. We here specify
the leading perturbative corrections around the special
cases above, and then show the generic behavior in two
figures.

Expanding around the Rashba limit of Sec. III A,
which is justified for b,∆ ≪ 1, we get the lowest-
order perturbative correction to the finite-energy (i.e.,
p 6= 0,−1) Landau levels (3.6) in the form

δEp,±,+ = −δEp,±,− =
(λ2∆+ b)

√

(1 + λ2)2 + 4pλ2
. (3.10)

Expanding instead around the intrinsic SOI limit of
Sec. III B, we find the following small-λ corrections to the
Landau levels in Eq. (3.8):40 For p = 0, the state E0,+,↓

corresponding to the exact solution (3.3) is not changed
by λ to any order, while E0,−,↑ obtains the lowest-order
correction

δE0,−,↑ =
2(∆− b)λ2

4b(b−∆) + 1
.

The corresponding eigenstate is, however, not a spin-
↑ state anymore. For p > 0, the eigenenergy Ep,±,s

[Eq. (3.8)] acquires the perturbative correction

δEp,±,s = ± sλ2

2
√

p+∆2

p+ 2(∆− sb)(∆∓
√

p+∆2)

1 + 4b
(

sb±
√

p+∆2
) . (3.11)

We now consider two different SOI parameter sets
consistent with the estimates in Ref. 12, and show the
complete evolution of the Landau levels from the weak-
to the strong-field limit. In Fig. 1, numerical results
for the few lowest-energy Landau levels are depicted for
∆ > λ/2, corresponding to a QSH phase for B = 0.
The (valley-degenerate) spin-split levels corresponding to
the ∆ = λ = b = 0 zero mode exhibit a zero-energy
crossing at B ≈ 11 T for the chosen SOI parameters.
This crossing signals a quantum phase transition from
the QSH phase, which survives for sufficiently small B
and ∆ > λ/2, to a peculiar QH phase for large B. As we
discuss in Sec. IV, one then again has helical edge states20

but with reversed spin current. Similar crossings can oc-

cur for higher Landau states as well, as is shown in Fig. 2
for a parameter set with ∆ < λ/2 where no QSH physics
is expected. For even larger B not displayed in Fig. 2,
we find an E = 0 crossing where the Rashba-dominated
small-B phase turns into the helical QH phase.

D. Spin polarization

Given the Landau level eigenstates, it is straightfor-
ward to compute the spin-polarization densities Si(y) =
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5 10 15 20
B [T]

-1

0

1

E
 / 

ω
 c

∆=0.65 meV
λ=0.15 meV

FIG. 1: (Color online) Low-lying Landau level energies (in
units of the cyclotron energy ~ωc) vs magnetic field B (in
Tesla) for the SOI parameters ∆ = 0.65 meV and λ =
0.15 meV. For small B, this corresponds to the QSH phase,
∆ > λ/2. For better visibility, the deviation from the respec-
tive ∆ = λ = b = 0 level has been magnified by a factor 10
for each curve.
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FIG. 2: (Color online) Same as in Fig. 1 but for ∆ = 1.5 meV
and λ = 6.5 meV.

Ψ† si
2 Ψ (i = x, y, z). We find Sx(y) = 0, while

Sy(y) =
ν − p

λNp

(

pDp−1Dp +
ν−
µ−

DpDp+1

)

, (3.12)

Sz(y) =
1

2Np

[

p2D2
p−1 +

(

ν2− − (ν − p)2

λ2

)

D2
p

− (ν − p)2

λ2µ2
−

D2
p+1

]

,

where Dp ≡ Dp(−η). In the absence of the Rashba term
(λ = 0), the in-plane component Sy vanishes identically,
since then the eigenstates are simultaneously eigenstates
of sz. For finite λ, integration over y yields a vanishing

expectation value for the overall in-plane polarization,
but the Rashba coupling still induces local in-plane spin
polarization. The case ∆ = b = 0 has been discussed in
detail by Rashba.16

IV. QH EDGE STATES FOR INTRINSIC SOI

In this section, we consider the edge states correspond-
ing to the relativistic Landau level problem in Sec. III
when a boundary at y = 0 is present. We focus on
the case of purely intrinsic SOI, λ = 0, but the physics
should be qualitatively unchanged for λ ≪ ∆. In the
region y < 0 we then have a homogeneous magnetic field
Bz = +B, i.e, ǫ = +1. (For a pseudo-magnetic field, this
holds at the K point while at the K ′ point, Bz → −Bz.)
Since the problem of edge states in graphene has been

studied extensively before, some remarks are in order at
this point. In fact, putting ∆ = b = λ = 0, our results
are consistent with those of Refs. 22,23,42–44 reporting
chiral QH edge states in graphene. On the other hand,
the B = 0 model is equivalent to the continuum limit
of the Kane-Mele model4 and thus exhibits helical QSH
edge states.6 (The helical state has a pair of counterprop-
agating 1D modes with opposite spin polarization.) The
Kane-Mele model with (∆, b) 6= 0 but without orbital
magnetic field has recently been studied,45 and a quan-
tum phase transition from a (generalized) QSH phase for
b < ∆ to a quantum anomalous Hall (QAH) phase for
b > ∆ has been predicted. It is worthwhile to stress
that the QSH effect survives even when time-reversal
symmetry is broken. In the QAH phase, one has chi-
ral edge states moving in the same direction for both
spin polarizations.46 The valley analogue of this quan-
tum phase transition has also been studied.47 Further-
more, for the 2D topological insulator realized in HgTe
quantum well structures, a related transition has been
predicted48 by including the orbital field but omitting
the Zeeman term.
However, the Zeeman term is crucial in graphene near

the Dirac point: for ∆ = 0 and b 6= 0, spin-filtered helical
edge states (similar to the QSH case) emerge again.20,49

Our results below show that this QSH-like phase is sep-
arated from the “true” QSH phase by a quantum phase

transition at b = ∆. Albeit both phases have spin-filtered
edge states, they differ in the direction of the spin cur-
rent. This feature should allow to experimentally dis-
tinguish both phases and to identify the quantum phase
transition separating them. In practice, one may reach
this transition simply by changing the magnetic field.
Normalizability of the wavefunctions for y → −∞

implies38 that the only allowed solutions follow from
the φp spinors in Eq. (2.17), while the ψp solutions
[Eq. (2.18)] have to be discarded. Since we do not
have to impose normalizability at y → ∞, the order p
is not constrained to integer values and can now take
any real value consistent with suitable boundary condi-
tions at y = 0. For given conserved momentum kx and
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spin s, the solutions for p yield the edge state spectrum,
Es(kx). Note that for finite magnetic field and kx < 0,
the distance from the boundary is set by |kx|. Putting

λ = 0, possible solutions φK,K′

p,±,s(y) must be of the form in
Eq. (3.7), with energy Ep,±,s given by Eq. (3.8). While
p ∈ N0 in Sec. III B, we now consider arbitrary real p.
To make progress, we have to specify boundary condi-
tions at y = 0. We investigate two widely used boundary
conditions, namely the zig-zag edge and the armchair
edge.3,20,50,51

A. Zig-zag edge

For a zig-zag edge with the last row of carbon atoms
residing on, say, sublattice A, the microscopic wavefunc-
tion must vanish on the next row outside the sample,
belonging to sublattice B. In the continuum limit, since
the x-axis here points in the zig-zag direction, the lower
component of the spinor φKp,±,s [Eq. (3.7)] has to vanish

at y = 0.20,22 For both spin directions s = ±, this yields
the condition

Dp(2kx) = 0, (4.1)

which has to be solved for the energy, expressed in terms

of p as Es = sb ±
√

p+∆2. At the other Dirac point,

the lower component of the spinor φK
′

p,±,s should vanish
at y = 0, where Eq. (2.12) implies the condition

νp,±,sDp−1(2kx) = 0, (4.2)

with νp,±,s in Eq. (3.9). It is not possible to find simul-
taneous solutions to both Eqs. (4.1) and (4.2). Possible
states are thus confined to a single valley: the bound-
ary condition does not mix the valleys but lifts the KK ′

degeneracy. Remarkably, for s = ± and arbitrary kx,
Eq. (4.2) is satisfied by the K ′ solution for p = 0 in
Sec. III B, with Es(kx) = s(b − ∆), i.e., we find a pair
of “flat” states. For all other states, Eq. (4.2) simplifies
to condition (4.1) with p → p − 1 (and K → K ′). We
mention in passing that for ∆ = 0 this condition reduces
to Eq. (9) in Ref. 44. Equation (4.1) can be solved in
closed form for kx → −∞ using asymptotic properties of
the parabolic cylinder function. To exponential accuracy,
with n ∈ N0 we find

p = n+
|2kx|2n+1

√
2πn!

e−2k2

x . (4.3)

Numerical analysis of the above equations recovers the
expected spin-filtered helical edge states20 for b > ∆, but
the continuum approach used in this paper fails to give
clear evidence for the helical QSH edge states for b < ∆.
As pointed out in Ref. 49, under the zig-zag boundary
condition one needs a more microscopic description in
order to capture these states. The “flat” states above
are remnants of the sought QSH edge states, but the
continuum model is not sufficient to describe their proper
dispersion relation. We therefore turn to the armchair
boundary condition.

B. Armchair edge

Under the armchair boundary condition, we instead
impose ΨK

A +ΨK′

A = 0 and ΨK
B +ΨK′

B = 0 at the bound-
ary, with Ψ in Eq. (2.1). This boundary condition mixes
the valleys and involves both sublattices. Since in our
coordinate system the x-axis is parallel to the zig-zag
direction, we first rotate the system by π/2 and then im-
pose the boundary condition at y = 0. Written in the
original coordinates, we find (for each spin direction s)

νp,±,sDp−1(2kx)±Dp(2kx) = 0. (4.4)

We note that the relative phase between the K and K ′

components is not fixed by the Dirac equation, which
is diagonal in valley space. However, the only relative
phase compatible with the boundary condition imposed
simultaneously on both sublattices is ±1. Each of the two
conditions in Eq. (4.4) may thus be imposed separately.
We have checked that the numerical solution of Eq. (4.4)
for ∆ = 0 recovers the known results for the QH edge
state spectrum.20,44 In addition, for B = 0, the armchair
edge is known50,52 to yield QSH edge states.
Our numerical results for the dispersion relation

Es,±(kx) for the armchair edge are shown in Fig. 3, where
± corresponds to the symmetric or antisymmetric lin-
ear combination in Eq. (4.4) and the magnetic field is
B = 15 T. The main panel shows results for ∆ = 6 meV.
Then ∆ > b, and we have the (generalized) QSH phase.
Indeed, for E = 0 we find the helical edge state, where
the right- (left-)mover has spin s =↑ (s =↓). The in-
set of Fig. 3 is for ∆ = 0.3 meV, where ∆ < b and the
spin-filtered helical QH phase20 is found. Here we have
spin s =↓ (s =↑) for the right- (left-)mover. Hence the
spin current differs in sign for ∆ > b and ∆ < b, with
a quantum phase transition at ∆ = b separating both
phases. This feature should allow for an experimentally
observable signature of the transition.

V. SPIN STRUCTURE IN MAGNETIC

WAVEGUIDES

In this section, a spatially inhomogeneous situation is
considered, where a magnetic waveguide26–28 along the
x-direction can be realized. Since the problem remains
homogeneous along the x-direction, px = ~kx is still con-
served. For the physics described below, the Zeeman
coupling b gives only tiny corrections28 and will be ne-
glected. Moreover, there are no valley-mixing terms such
that we can focus on a single valley.
We distinguish a central strip of width 2L (the “waveg-

uide”), −L < y < L, and two outer regions y < −L and
y > L. In the central strip, we shall allow for arbitrary
SOI parameters ∆ and λ. In addition, strain may cause
a constant contribution to the vector potential, Ax, and
a scalar potential, V . The magnetic field in the cen-
tral strip is denoted by Bc. For |y| > L, we assume
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FIG. 3: (Color online) Dispersion relation Es,±(kx) of a semi-
infinite graphene sheet with an armchair edge at y = 0, ob-
tained numerically from Eq. (4.4). We use λ = 0, B = 15 T,
∆ = 6 meV, and the + (−) sign is for the symmetric (anti-
symmetric) valley combination in Eq. (4.4). Inset: Same for
∆ = 0.3 meV.

that all strain- or SOI-related effects can be neglected,
∆ = λ = Ax = V = 0. In principle, by lithographic
deposition of adatoms, one may realize this configura-
tion experimentally. For y < −L, the magnetic field is
Bz = B > 0, while for y > L, we set Bz = ǫB, where
ǫ = 1 (ǫ = −1) corresponds to the parallel (antiparal-
lel) field orientation on both sides. For ǫ = −1, we take
Bc = 0, while for ǫ = +1, we set Bc = −B.

The setup with ǫ = −1 could be realized by using a
“folded” geometry,53,54 cf. recent experimental studies.55

Note that when the magnetic field changes sign, one en-
counters “snake orbits,” which have been experimentally
observed in graphene pn junctions.56 For the ǫ = −1 con-
figuration, we have uni-directional snake orbits mainly lo-
calized along the waveguide, while for ǫ = +1, we get two
counterpropagating snake states centered near y = ±L.
For ∆ = λ = Ax = V = 0, both cases (ǫ = ±1) have been
studied in detail in Ref. 27. Technically, one determines
the eigenstates and the spectrum, E(kx), by matching
the wavefunctions in the three different regions, which
results in an energy quantization condition. This method
can be straightforwardly extended to the more complex
situation studied here by employing the general solution
in Sec. II for the central strip.

Before turning to results, we briefly summarize the pa-
rameter values chosen in numerical calculations. We take
a magnetic field value B = 0.2 T, and the waveguide
width is 2L =

√
8ℓB ≈ 40 nm. The strain-induced pa-

rameters in the central strip are taken as Ax = −16µm−1

and V = −20 meV. These values have been estimated for
a folded setup,54 where V comes from the deformation
potential. We consider two different parameter choices
for the SOI couplings: Set (A) has ∆ = 13 meV and
λ = 3 meV, corresponding to the QSH phase. For set
(B), we exchange both values, i.e., ∆ = 3 meV and

λ = 13 meV.

A. Antiparallel case: Snake orbit

Let us first discuss the ǫ = −1 configuration, where the
magnetic field Bz differs in sign in the regions y < −L
and y > L. The dispersion relation of typical low-
energy 1D waveguide modes is shown in Fig. 4. For
kx → −∞ the centers of the quantum states are lo-
cated deep in the left and right magnetic regions, far
from the waveguide. Thus one has doubly-degenerate
dispersionless “bulk” Landau states. With increasing kx
these states are seen to split up. The dominant splitting,
which is already present for ∆ = λ = 0, comes from the
splitting of symmetric and anti-symmetric linear combi-
nations of the Landau states for y < −L and y > L with
increasing overlap in the waveguide region.27 Asymptot-
ically, the dispersion relation of all positive-energy snake
states is E(kx → +∞) ≃ ~vFkx.

27 For intermediate kx
and (∆, λ) 6= 0, however, we get spin-split snake states

out of the previously spin-degenerate states. The spin
splitting is mainly caused by the Rashba coupling λ and
disappears for λ→ 0, cf. the inset of Fig. 4.
The zero-energy bulk Landau state (for kx → −∞)

shows rich and interesting behavior in this setup. While
for kx → +∞, we expect one pair of snake states with
positive slope and one pair with negative slope, for the
studied parameter set and range of kxL, there is just one
state with negative slope while three branches first move
down and then have a positive slope. Accordingly, at the
Dirac point (E = 0), Fig. 4 shows that there are three
right-movers with different Fermi momenta and different
spin texture. Two of those states are indicated by stars
(*) in the main panel of Fig. 4 and their local spin texture
is shown in Fig. 5. Evidently, they are mainly localized
inside the waveguide and have antiparallel spin polariza-
tion. We find spin densities with Sx = 0 for both states.
For the Rashba-dominated situation in Fig. 5, spin is po-
larized perpendicular to the current direction and has a
rather complex spatial profile.

B. Parallel configuration

Next we come to the ǫ = +1 configuration, where the
magnetic field is +B for |y| > L and −B for |y| < L. One
therefore expects two counterpropagating snake states in
the x-direction localized around y = ±L. The corre-
sponding spectrum is shown in Fig. 6. We focus on pa-
rameter set (B), since for set (A), the spin splitting is
minimal and less interesting. The spectrum consists of
two qualitatively different states, namely states of bulk
Landau character for large |kx|L, and a set of propagat-
ing waveguide modes.27 The spectral asymmetry seen in
Fig. 6 for all propagating modes, E(−kx) 6= E(kx), is
caused by the strain (Ax)-induced shift of kx. Such a
spectral asymmetry may give rise to interesting chiral-
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FIG. 4: Dispersion relation of the lowest few energy branches
for a strained magnetic waveguide with ǫ = −1 and SOI in
the central strip of width 2L. Energies are given in units of
~vF /L. The main panel is for parameter set (B). The stars
refer to the states further studied in Fig. 5. Inset: Same for
set (A). (See main text for details.)
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FIG. 5: (Color online) Spin density profile Sy,z (in arbitrary
units) vs y/L for the two E = 0 right-moving states indicated
by stars in the main panel of Fig. 4. The left star corresponds
to kxL = 1.745, the right star to kxL = 2.629. Inset: Particle
density, ρ, and current density, Jx (which is the only non-
vanishing component), in arbitrary units vs y/L. We show
the result only for kxL = 1.745, since kxL = 2.629 yields
practically the same.

ity and magnetoasymmetry effects.57 The spin texture
is shown in Fig. 7 for a pair of right- and left-moving
states with E = 1.2~vF/L, cf. the stars in Fig. 6. We
observe from the main panel in Fig. 7 that the spin polar-
ization of both states is approximately antiparallel. Be-
cause of their spatial separation and the opposite spin
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k
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0.5

1

1.5

2

E
 [

 v
 F

/L
 ]

FIG. 6: Same as Fig. 4 but for the setup with ǫ = +1 and
parameter set (B). Solid and dashed curves are for better
visibility only. The two states indicated by stars are studied
in Fig. 7.

direction, elastic disorder backscattering between these
counterpropagating snake modes should be very strongly
suppressed. The inset of Fig. 7 shows the current den-
sity profile across the waveguide. Although the profile is
quite complex, we observe that the current has opposite
sign for both modes.

VI. CONCLUDING REMARKS

In this work, we have studied the magnetoelectronic
properties of monolayer graphene in the presence of
strong intrinsic and Rashba-type spin-orbit couplings.
According to a recent proposal,12 large intrinsic cou-
plings may be realized by suitable adatom deposition
on graphene. We have presented an exact solution for
the Landau level states for arbitrary SOI parameters.
When the intrinsic SOI dominates, by increasing the
magnetic field, we predict a quantum phase transition
from the quantum spin Hall phase to a helical quantum
Hall phase at the Dirac point. In both phases, one has
spin-filtered edge states but with opposite spin current
direction. Thus the transition could be detected by mea-
suring the spin current either in a transport experiment
(e.g., along the lines of Ref. 58) or via a magneto-optical
experiment.
In inhomogeneous magnetic fields, especially when also

strain-induced pseudo-magnetic fields are present, inter-
esting waveguides can be envisioned. Such setups allow
for snake states, where spin-orbit couplings result in a
spin splitting. In a double-snake setup, there is a pair
of counterpropagating snake states that carry (approx-
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FIG. 7: (Color online) Spin density Sy,z (in arbitrary units)
vs y/L for the two states indicated by stars in Fig. 6. The left
(right) star corresponds to a left- (right-)mover with kxL =
−1.46 (kxL = 2.83). Note that the spin polarizations of both
states are approximately antiparallel. Inset: Particle current
profile Jx (in arbitrary units) vs y/L for both states. Black
solid curve: kxL = 2.83. Dashed red curve: kxL = −1.46.

imately) opposite spin polarization. This implies that
scattering by elastic impurities is drastically suppressed.
The resulting spin textures can in principle be detected
by spin resolved ARPES (see, e.g., Refs. 10 and 59) or
spin-polarized STM measurements.
We hope that our predictions can soon be tested ex-

perimentally.
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Appendix A: Derivation of the eigenstates

Here we provide some details concerning the derivation
of Eq. (2.17); the notation below is explained in Sec. II.
First, additional relations like Eq. (2.14) can be stated,

aDp(−η) = −pDp−1(−η), a†Dp(−η) = −Dp+1(−η),
aDp(iη) = −iDp+1(iη), a†Dp(iη) = −ipDp−1(iη).

We wish to construct the solution φ = (φ1, φ2, φ3, φ4)
T

satisfying Eq. (2.13),









ν− a 0 0
a† ν+ iλ 0
0 −iλ µ+ a
0 0 a† µ−















φ1
φ2
φ3
φ4






= 0.

We here show only the case ǫ = +1 near the K point; all
other cases follow analogously. Solving the first and last
equations for φ1 and φ4, respectively, we find

φ1 = − 1

ν−
aφ2, φ4 = − 1

µ−

a†φ3.

For µ− = 0, one has the solution (3.3) instead, while for
ν− = 0 there are no solutions. The second and third
equations then yield two coupled second-order ordinary
differential equations for φ2 and φ3,

(a†a− ν)φ2 − iλν−φ3 = 0,

iλµ−φ2 + (a†a+ 1− µ)φ3 = 0.

Solving for φ3 yields

φ3 =
1

iλν−
(a†a− ν)φ2,

and we thus arrive at the equation

Dφ2 ≡
[

(a†a+ 1− µ)(a†a− ν)− λµ−ν−
]

φ2 = 0.

Since the operator D commutes with the “number oper-
ator” a†a, the sought solutions for φ2 span the kernel of
D where the φ2 are eigenstates of a†a,

a†a φ2,p(η) = p φ2,p(η).

This leads to an algebraic equation for the eigenvalue p,

(p+ 1− µ)(p− ν) = λ2µ−ν−,

which implies the two solutions in Eq. (2.15). With a†a =
(η/2)2 − 1/2− d2/dη2, the eigenvalue equation for φ2 is
just the differential equation of the parabolic cylinder
functions,38

(

d2

dη2
+ p+

1

2
− η2

4

)

φ2(η) = 0,

which has the four (linearly dependent) solutions
{Dp(η), Dp(−η), D−p−1(iη), D−p−1(−iη)}. Given the so-
lution for φ2, all other components in φ follow by using
the recurrence relations of the Dp functions, see, e.g.,
Eq. (2.14). After straightforward but lengthy algebra,
we obtain the four solutions (also quoted for ǫ = −1)
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φǫ=+1,p =









−pDp−1(η)
ν−Dp(η)

i(ν−p)
λ Dp(η)

−i(ν−p)
λµ−

Dp+1(η)









,









pDp−1(−η)
ν−Dp(−η)

i(ν−p)
λ Dp(−η)

i(ν−p)
λµ−

Dp+1(−η)









,

ψǫ=+1,p =









−iD−p(−iη)
ν−D−p−1(−iη)

i(ν−p)
λ D−p−1(−iη)

−(ν−p)(p+1)
λµ−

D−p−2(−iη)









,









−iD−p(iη)
ν−D−p−1(iη)

i(ν−p)
λ D−p−1(iη)

(ν−p)(p+1)
λµ−

D−p−2(iη)









,

φǫ=−1,p =









−Dp+1(−η)
µ−Dp(−η)

i(µ−p−1)
λ Dp(−η)

−i(µ−p−1)
λν−

Dp−1(η)









,









Dp+1(η)
µ−Dp(η)

i(µ−p−1)
λ Dp(η)

i(µ−p−1)
λν−

Dp−1(η)









,

ψǫ=−1,p =









−i(p+ 1)D−p(−iη)
µ−D−p−1(−iη)

i(µ−p−1)
λ D−p−1(−iη)

(µ−p−1)
λν−

D−p−2(−iη)









,









i(p+ 1)D−p(iη)
µ−D−p−1(iη)

i(µ−p−1)
λ D−p−1(iη)

− (µ−p−1)
λν−

D−p−2(iη)









.

For a given energy E, Eq. (2.13) admits precisely four
linearly independent solutions for φ. However, Eq. (2.15)
implies two possible values for p, i.e., we have the freedom
to choose just two out of the four quoted eigenstates (for

given ǫ) and then allow both values of p in Eq. (2.15).
Our conventions for these two basis states are specified
in Eqs. (2.17) and (2.18) in the main text. Thereby we
have obtained all possible solutions to Eq. (2.13).
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