55 research outputs found

    The association between renal function and structural parameters: a pig study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective was to investigate the association between renal structural parameters and renal function. The structural parameters were renal cortical volume, total renal volume, number of glomeruli, and total glomerular volume, and renal function was expressed by the single kidney GFR (skGFR). Investigations were performed using both healthy and chronically diseased kidneys. We investigated which of the structural parameters showed the best correlation to renal function and evaluated the possibility of predicting the renal function from structural parameters.</p> <p>Methods</p> <p>Twenty-four pigs, twelve with healthy kidneys and twelve with diseased kidneys, underwent skGFR measurements. Nephrectomies were performed and structural parameters were estimated using stereological procedures. The correlation between the structural parameters and skGFR was analysed by Pearson's correlation test. The prediction of skGFR from structural parameters was analysed by a linear regression test.</p> <p>Results</p> <p>In general, we demonstrated a good correlation between structural parameters and skGFR. When all kidneys were evaluated together Pearson's correlation coefficient between skGFR and any stereological parameter was above 0.60 and highly significant (p < 0.001), and with r-values ranging from 0.62 regarding number of glomeruli, to 0.78 regarding cortical volume. The best correlation was found between cortical volume and skGFR. Prediction of single kidney GFR from any structural parameter showed to be quite imprecise.</p> <p>Conclusion</p> <p>The observed correlations between structural parameters and renal function suggest that these parameters may potentially be useful as surrogate markers of the renal function. At present, however, precise prediction of renal function based on a single structural parameter seems hard to obtain.</p

    Identification and HLA-Tetramer-Validation of Human CD4(+) and CD8(+) T Cell Responses against HCMV Proteins IE1 and IE2

    Get PDF
    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy

    Algorithms over partially ordered sets

    No full text
    corecore