630 research outputs found

    Effects of Chromate and Chromate Conversion Coatings on Corrosion of Aluminum Alloy 2024-T3

    Get PDF
    Various effects of chromate conversion coatings (CCCs) and chromate in solution on the corrosion of AA2024-T3 and pure Al are studied in this work. Raman spectroscopy was used to investigate the nature of chromate in CCCs through a comparison with the spectra of known standards and artificial Cr(III)/Cr(VI) mixed oxides. Chromate was shown to be released from CCCs and to migrate to and protect a nearby, uncoated area in the artificial scratch cell. However, experiments investigating the effect of chromate in solution on anodic dissolution kinetics under potentiostatic control indicated that large chromate concentrations were needed to have an effect.This work was supported by Major H. DeLong at the United States Air Force Office of Scientific Research under contracts F49620-96-1-0479 and F49620-96-0042

    Effects of Surface Monolayers on the Electron-Transfer Kinetics and Adsorption of Methyl Viologen and Phenothiazine Derivatives on Glassy Carbon Electrodes

    Get PDF
    Five organic redox systems were examined in aqueous electrolytes on polished and chemically modified glassy carbon (GC), to evaluate the effects of surface structure on the heterogeneous transfer rate constant, k°. Methyl viologen reduction to its cation radical exhibited a voltammetric peak potential difference which was insensitive to surface modification, with k°decreasing by only 50% when a chemisorbed monolayer was present. Methylene blue and three other phenothiazines adsorbed to polished GC, but the adsorption was suppressed by surface modification. For all four phenothiazines, chemisorbed or physisorbed monolayers of electroinactive species had minor effects on k°, with a compact nitrophenyl monolayer decreasing k°by 50%. This minor change in k°was accompanied by a major decrease in adsorption, apparently due to inhibition of dipole-dipole or π-π interactions between the phenothiazine and GC. Chlorpromazine oxidation to its cation radical was studied in more detail, under conditions where adsorption was suppressed. A plot of the natural log of the observed rate constant vs the monolayer thickness for a variety of chemisorbed monolayers was linear, with a slope of -0.22 Å -1 . The observations are consistent with a through-bond electron-tunneling mechanism for electron transfer to all five redox systems studied. The tunneling constant for CPZ of 0.22 Å -1 is between that reported for electron tunneling through conjugated polyene spacers (0.14 Å -1 ) and that reported for phenyl-methylene spacers (0.57 Å -1 ), on the basis of long-range electron transfer in rigid molecules. Through a variety of efforts from many laboratories, significant progress has been made toward understanding the electrochemical behavior of widely used carbon electrodes. 1-7 Since sp 2 carbon surfaces are difficult to prepare reproducibly and are prone to degradation via oxidation and impurity adsorption, our understanding of the behavior of carbon electrodes has lagged that of metal electrodes, particularly mercury ones. This situation improved dramatically after more attention was paid to surface preparation and the number of uncontrolled surface variables was reduced. In particular, several landmarks indicating reproducible performance of sp 2 carbon electrodes, mainly glassy carbon (GC), have been achieved: 1. Determination of the rapid heterogeneous electron-transfer rate constants (k°), for outer-sphere systems (e.g., Ru(NH 3 ) 6 +3/+2 k°> 0.2 cm/s), 8,9 comparable to those observed on Au and Pt. 10 2. Preparation of low-oxide (O/C < 2%) carbon surfaces which retain their low oxide levels for at least one month in air. 11,12 3. Structural characterization of organic monolayers and submonolayers on carbon with Raman spectroscopy. [13][14][15] 4. Correlation of specific surface sites with electrocatalytic activity for various redox systems, including ascorbic acid, NADH, Fe 3+/2+ , etc. 8,[16][17][18][19] 5

    Storage and Release of Soluble Hexavalent Chromium from Chromate Conversion Coatings on Al Alloys Kinetics of Release

    Get PDF
    The release of chromate ions from chromate conversion coatings (CCCs) on Al alloys was studied, and the effect of aging of CCCs on the chromate release kinetics was investigated. Chromate release from CCCs into aqueous solutions was monitored by measuring the change in the chromate concentration in solution using UV-visible spectroscopy. Heat-treatment of the CCC greatly reduced the chromate release rate. The chromate release rate also decreased with increasing aging time at room temperature. A diffusion-control model was proposed based on the notion that the CCC in an aqueous solution is a porous, two-phase structure consisting of a solid phase with adsorbed Cr(VI) species that is in local Langmuir-type equilibrium with an interpenetrating solution phase. This model results in a concentration gradient of soluble Cr(VI) in the solution phase of the CCC as chromate is released. The concentration and diffusion coefficients of soluble Cr(VI) in CCC were estimated. The estimated diffusion coefficient tended to decrease with aging time, suggesting that the CCC is modified with aging time.This work was supported under Air Force Office of Scientific Research Multidisciplinary University Research Initiative contract no. F49620-96-1-0479

    Scanning Electrochemical Microscopy. Theory of the Feedback Mode

    Get PDF
    The steady-state current that flows between the scanning tlp (a disk ultramicroelectrode imbedded in an Insulating sheath) and a planar sample substrate in a scannlng electrochemical microscope (SECM) operating in the feedback mode is calculated by the finite element method with an exponentlaily expandlng grld, for both conductlve and Insulating samples. For conductlve substrates the tip current, representing, for example, the oxidatkn reactlon of R to 0, is enhanced by flow of R generated at the substrate to the tlp and is a functlon of tiphubstrate distance, d , but not the radius of the lnsuiatlng sheath. For insulating substrates, the tlp current Is decreased by blockage of the diffusion of R to the tip by the substrate and depends upon d and the Insulating sheath radius. The theoretical results are compared to experimental studies

    Raman Optical Activity Using Twisted Photons

    Get PDF
    Raman optical activity underpins a powerful vibrational spectroscopic technique for obtaining detailed structural information about chiral molecular species. The effect centers on the discriminatory interplay between the handedness of material chirality with that of circularly polarized light. Twisted light possessing an optical orbital angular momentum carries helical phase fronts that screw either clockwise or anticlockwise and, thus, possess a handedness that is completely distinct from the polarization. Here a novel form of Raman optical activity that is sensitive to the handedness of the incident twisted photons through a spin-orbit interaction of light is identified, representing a new chiroptical spectroscopic technique

    Electronic Characteristics and Charge Transport Mechanisms for Large Area Aromatic Molecular Junctions

    Get PDF
    This paper reports the electron transport characteristics of carbon/molecule/Cu molecular junctions, where aromatic molecules (azobenzene or AB and nitroazobenzene or NAB) are employed as the molecular component. It is shown that these devices can be made with high yield (>90%), display excellent reproducibility, and can withstand at least 1.5 × 10 9 potential cycles and temperatures of at least 180°C. Transport mechanisms are investigated by analysis of current density/voltage (J-V) curves as a function of the molecular layer thickness and temperature. Results show that J decreases exponentially with thickness, giving a measured value for the low-bias attenuation factor ( ) of 2.5 ( 0.1 nm -1 for AB and NAB. In addition, it is shown that transport is not thermally activated over a wide range of temperatures (5-450 K) and that the appearance of a thermally "activated" region at higher temperatures can be accounted for by the effect of temperature on the distribution of electrons around the Fermi level of the contact(s). These results indicate that quantum mechanical tunneling is likely the mechanism for charge transport in these junctions. Although application of the Simmons tunneling model leads to transport parameters consistent with nonresonant tunneling, the parameters obtained from fitting experimental data indicate that the barrier height and/or shape, effective mass, and dielectric constant (Δ) can all change with thickness. Experimental measurements of Δ and density functional theory (DFT) calculations of molecular energy levels and polarizability support these conclusions. Finally, the implications of the transport mechanisms are discussed from the viewpoint of designing functional molecular electronic devices

    A new view of electrochemistry at highly oriented pyrolytic graphite

    Get PDF
    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes

    Pseudo-single crystal electrochemistry on polycrystalline electrodes : visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction

    Get PDF
    The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell microscopy (SECCM) complemented with electron backscatter diffraction (EBSD) is demonstrated as a means of performing ‘pseudo-single-crystal’ electrochemical measurements at individual grains of a polycrystalline platinum electrode, while also allowing grain boundaries to be probed. Using the Fe2+/3+ couple as an illustrative case, a strong correlation is found between local surface structure and electrochemical activity. Variations in electrochemical activity for individual high index grains, visualized in a weakly adsorbing perchlorate medium, show that there is higher activity on grains with a significant (101) orientation contribution, compared to those with (001) and (111) contribution, consistent with findings on single-crystal electrodes. Interestingly, for Fe2+ oxidation in a sulfate medium a different pattern of activity emerges. Here, SECCM reveals only minor variations in activity between individual grains, again consistent with single-crystal studies, with a greatly enhanced activity at grain boundaries. This suggests that these sites may contribute significantly to the overall electrochemical behavior measured on the macroscale

    Cooperative object transport with a swarm of e-puck robots: robustness and scalability of evolved collective strategies

    Get PDF
    Cooperative object transport in distributed multi-robot systems requires the coordination and synchronisation of pushing/pulling forces by a group of autonomous robots in order to transport items that cannot be transported by a single agent. The results of this study show that fairly robust and scalable collective transport strategies can be generated by robots equipped with a relatively simple sensory apparatus (i.e. no force sensors and no devices for direct communication). In the experiments described in this paper, homogeneous groups of physical e-puck robots are required to coordinate and synchronise their actions in order to transport a heavy rectangular cuboid object as far as possible from its starting position to an arbitrary direction. The robots are controlled by dynamic neural networks synthesised using evolutionary computation techniques. The best evolved controller demonstrates an effective group transport strategy that is robust to variability in the physical characteristics of the object (i.e. object mass and size of the longest object’s side) and scalable to different group sizes. To run these experiments, we designed, built, and mounted on the robots a new sensor that returns the agents’ displacement on a 2D plane. The study shows that the feedback generated by the robots’ sensors relative to the object’s movement is sufficient to allow the robots to coordinate their efforts and to sustain the transports for an extended period of time. By extensively analysing successful behavioural strategies, we illustrate the nature of the operational mechanisms underpinning the coordination and synchronisation of actions during group transport
    • 

    corecore