514 research outputs found

    Numerical Evidence for Divergent Burnett Coefficients

    Full text link
    In previous papers [Phys. Rev. A {\bf 41}, 4501 (1990), Phys. Rev. E {\bf 18}, 3178 (1993)], simple equilibrium expressions were obtained for nonlinear Burnett coefficients. A preliminary calculation of a 32 particle Lennard-Jones fluid was presented in the previous paper. Now, sufficient resources have become available to address the question of whether nonlinear Burnett coefficients are finite for soft spheres. The hard sphere case is known to have infinite nonlinear Burnett coefficients (ie a nonanalytic constitutive relation) from mode coupling theory. This paper reports a molecular dynamics caclulation of the third order nonlinear Burnett coefficient of a Lennard-Jones fluid undergoing colour flow, which indicates that this term is diverges in the thermodynamic limit.Comment: 12 pages, 9 figure

    Statistics of Certain Models of Evolution

    Get PDF
    In a recent paper, Newman surveys the literature on power law spectra in evolution, self-organised criticality and presents a model of his own to arrive at a conclusion that self-organised criticality is not necessary for evolution. Not only did he miss a key model (Ecolab) that has a clear self-organised critical mechanism, but also Newman's model exhibits the same mechanism that gives rise to power law behaviour as does Ecolab. Newman's model is, in fact, a ``mean field'' approximation of a self-organised critical system. In this paper, I have also implemented Newman's model using the Ecolab software, removing the restriction that the number of species remains constant. It turns out that the requirement of constant species number is non-trivial, leading to a global coupling between species that is similar in effect to the species interactions seen in Ecolab. In fact, the model must self-organise to a state where the long time average of speciations balances that of the extinctions, otherwise the system either collapses or explodes. In view of this, Newman's model does not provide the hoped-for counter example to the presence of self-organised criticality in evolution, but does provide a simple, almost analytic model that can used to understand more intricate models such as Ecolab.Comment: accepted in Phys Rev E.; RevTeX; See http://parallel.hpc.unsw.edu.au/rks/ecolab.html for more informatio

    A Model For Assessing The Likelihood Of Self-Sustaining Populations Resulting From Commercial Production Of Triploid Suminoe Oysters (Crassostrea Ariakensis) In Chesapeake Bay

    Get PDF
    Culture of a non-native species, such as the Suminoe oyster (Crassostrea ariakensis), could offset the harvest of the declining native eastern oyster (Crassostrea virginica) fishery in Chesapeake Bay. Because of possible ecological impacts from introducing a fertile non-native species, introduction of sterile triploid oysters has been proposed. However, recent data show that a small percentage of triploid individuals progressively revert toward diploidy, introducing the possibility that Suminoe oysters might establish self-sustaining populations. To assess the risk of Suminoe oyster populations becoming established in Chesapeake Bay, a demographic population model was developed. Parameters modeled were salinity, stocking density, reversion rate, reproductive potential, natural and harvest-induced mortality, growth rates, and effects of various management strategies, including harvest strategies. The probability of a Suminoe oyster population becoming self-sustaining decreased in the model when oysters are grown at low salinity sites, certainty of harvest is high, minimum shell length-at-harvest is small, and stocking density is low. From the results of the model, we suggest adopting the proposed management strategies shown by the model to decrease the probability of a Suminoe oyster population becoming self-sustaining. Policy makers and fishery managers can use the model to predict potential outcomes of policy decisions, supporting the ability to make science-based policy decisions about the proposed introduction of triploid Suminoe oysters into the Chesapeake Bay

    Timing of Millisecond Pulsars in NGC 6752: Evidence for a High Mass-to-Light Ratio in the Cluster Core

    Get PDF
    Using pulse timing observations we have obtained precise parameters, including positions with about 20 mas accuracy, of five millisecond pulsars in NGC 6752. Three of them, located relatively close to the cluster center, have line-of-sight accelerations larger than the maximum value predicted by the central mass density derived from optical observation, providing dynamical evidence for a central mass-to-light ratio >~ 10, much higher than for any other globular cluster. It is likely that the other two millisecond pulsars have been ejected out of the core to their present locations at 1.4 and 3.3 half-mass radii, respectively, suggesting unusual non-thermal dynamics in the cluster core.Comment: Accepted by ApJ Letter. 5 pages, 2 figures, 1 tabl

    Arecibo Timing and Single Pulse Observations of 18 Pulsars

    Full text link
    We present new results of timing and single pulse measurements for 18 radio pulsars discovered in 1993 - 1997 by the Penn State/NRL declination-strip survey conducted with the 305-m Arecibo telescope at 430 MHz. Long-term timing measurements have led to significant improvements of the rotational and the astrometric parameters of these sources, including the millisecond pulsar, PSR J1709+2313, and the pulsar located within the supernova remnant S147, PSR J0538+2817. Single pulse studies of the brightest objects in the sample have revealed an unusual "bursting" pulsar, PSR J1752+2359, two new drifting subpulse pulsars, PSR J1649+2533 and PSR J2155+2813, and another example of a pulsar with profile mode changes, PSR J1746+2540. PSR J1752+2359 is characterized by bursts of emission, which appear once every 3-5 min. and decay exponentially on a ~45 sec timescale. PSR J1649+2533 spends ~30% of the time in a null state with no detectable radio emission.Comment: submitted to Ap

    On the perspectives of testing the Dvali-Gabadadze-Porrati gravity model with the outer planets of the Solar System

    Full text link
    The multidimensional braneworld gravity model by Dvali, Gabadadze and Porrati was primarily put forth to explain the observed acceleration of the expansion of the Universe without resorting to dark energy. One of the most intriguing features of such a model is that it also predicts small effects on the orbital motion of test particles which could be tested in such a way that local measurements at Solar System scales would allow to get information on the global properties of the Universe. Lue and Starkman derived a secular extra-perihelion \omega precession of 5\times 10^-4 arcseconds per century, while Iorio showed that the mean longitude \lambda is affected by a secular precession of about 10^-3 arcseconds per century. Such effects depend only on the eccentricities e of the orbits via second-order terms: they are, instead, independent of their semimajor axes a. Up to now, the observational efforts focused on the dynamics of the inner planets of the Solar System whose orbits are the best known via radar ranging. Since the competing Newtonian and Einsteinian effects like the precessions due to the solar quadrupole mass moment J2, the gravitoelectric and gravitomagnetic part of the equations of motion reduce with increasing distances, it would be possible to argue that an analysis of the orbital dynamics of the outer planets of the Solar System, with particular emphasis on Saturn because of the ongoing Cassini mission with its precision ranging instrumentation, could be helpful in evidencing the predicted new features of motion. In this note we investigate this possibility in view of the latest results in the planetary ephemeris field. Unfortunately, the current level of accuracy rules out this appealing possibility and it appears unlikely that Cassini and GAIA will ameliorate the situation.Comment: LaTex, 22 pages, 2 tables, 10 figures, 27 references. Reference [17] added, reference [26] updated, caption of figures changed, small change in section 1.

    Cascade of Complexity in Evolving Predator-Prey Dynamics

    Full text link
    We simulate an individual-based model that represents both the phenotype and genome of digital organisms with predator-prey interactions. We show how open-ended growth of complexity arises from the invariance of genetic evolution operators with respect to changes in the complexity, and that the dynamics which emerges is controlled by a non-equilibrium critical point. The mechanism is analogous to the development of the cascade in fluid turbulence.Comment: 5 pages, 3 figures; added comments on system size scaling and turbulence analogy, added error estimates of data collapse parameters. Slightly enhanced from the version which will appear in PR

    Parallax of PSR J1744-1134 and the Local Interstellar Medium

    Get PDF
    We present the annual trigonometric parallax of PSR J1744-1134 derived from an analysis of pulse times of arrival. The measured parallax, pi = 2.8+/-0.3 mas ranks among the most precisely determined distances to any pulsar. The parallax distance of 357+/-39 pc is over twice that derived from the dispersion measure using the Taylor & Cordes model for the Galactic electron distribution. The mean electron density in the path to the pulsar, n_e = (0.0088 +/- 0.0009) cm^{-3}, is the lowest for any disk pulsar. We have compared the n_e for PSR J1744-1134 with those for another 11 nearby pulsars with independent distance estimates. We conclude that there is a striking asymmetry in the distribution of electrons in the local interstellar medium. The electron column densities for pulsars in the third Galactic quadrant are found to be systematically higher than for those in the first. The former correlate with the position of the well known local HI cavity in quadrant three. The excess electrons within the cavity may be in the form of HII clouds marking a region of interaction between the local hot bubble and a nearby superbubble.Comment: revised version accepted for publication in ApJ Letters; reanalysis of uncertainty in parallax measure and changes to fig

    Pulsar Timing with the Parkes Radio Telescope for the Fermi Mission

    Full text link
    We report here on two years of timing of 168 pulsars using the Parkes radio telescope. The vast majority of these pulsars have spin-down luminosities in excess of 10^34 erg/s and are prime target candidates to be detected in gamma-rays by the Fermi Gamma-Ray Space Telescope. We provide the ephemerides for the ten pulsars being timed at Parkes which have been detected by Fermi in its first year of operation. These ephemerides, in conjunction with the publicly available photon list, can be used to generate gamma-ray profiles from the Fermi archive. We will make the ephemerides of any pulsars of interest available to the community upon request. In addition to the timing ephemerides, we present the parameters for 14 glitches which have occurred in 13 pulsars, seven of which have no previously known glitch history. The Parkes timing programme, in conjunction with Fermi observations, is expected to continue for at least the next four years.Comment: Accepted for publication in PASA.12 page
    • …
    corecore