97 research outputs found

    Impurity-assisted Andreev reflection at a spin-active half-metal-superconductor interface

    Get PDF
    The Andreev reflection amplitude at a clean interface between a half-metallic ferromagnet (H) and a superconductor (S) for which the half metal's magnetization has a gradient perpendicular to the interface is proportional to the excitation energy ε\varepsilon and vanishes at ε=0\varepsilon=0 [B\'{e}ri {\em et al.}, Phys.\ Rev.\ B {\bf 79}, 024517 (2009)]. Here we show that the presence of impurities at or in the immediate vicinity of the HS interface leads to a finite Andreev reflection amplitude at ε=0\varepsilon=0. This impurity-assisted Andreev reflection dominates the low-bias conductance of a HS junction and the Josephson current of an SHS junction in the long-junction limit.Comment: 12 pages, 2 figure

    Electric field driven magnetic domain wall motion in ferromagnetic-ferroelectric heterostructures

    Get PDF
    We investigate magnetic domain wall (MDW) dynamics induced by applied electric fields in ferromagnetic-ferroelectric thin-film heterostructures. In contrast to conventional driving mechanisms where MDW motion is induced directly by magnetic fields or electric currents, MDW motion arises here as a result of strong pinning of MDWs onto ferroelectric domain walls (FDWs) via local strain coupling. By performing extensive micromagnetic simulations, we find several dynamical regimes, including instabilities such as spin wave emission and complex transformations of the MDW structure. In all cases, the time-averaged MDW velocity equals that of the FDW, indicating the absence of Walker breakdown.Peer reviewe

    Temperature dependent magnetic anisotropy in metallic magnets from an ab-initio electronic structure theory: L1_0-ordered FePt

    Full text link
    On the basis of a first-principles, relativistic electronic structure theory of finite temperature metallic magnetism, we investigate the variation of magnetic anisotropy, K, with magnetisation, M, in metallic ferromagnets. We apply the theory to the high magnetic anisotropy material, L1_0-ordered FePt, and find its uniaxial K consistent with a magnetic easy axis perpendicular to the Fe/Pt layering for all M and to be proportional to M^2 for a broad range of values of M. For small M, near the Curie temperature, the calculations pick out the easy axis for the onset of magnetic order. Our results are in good agreement with recent experimental measurements on this important magnetic material.Comment: 4 pages, 2 figure

    Temperature-dependent proximity magnetism in Pt

    Full text link
    We experimentally demonstrate the existence of magnetic coupling between two ferromagnets separated by a thin Pt layer. The coupling remains ferromagnetic regardless of the Pt thickness, and exhibits a significant dependence on temperature. Therefore, it cannot be explained by the established mechanisms of magnetic coupling across nonmagnetic spacers. We show that the experimental results are consistent with the presence of magnetism induced in Pt in proximity to ferromagnets, in direct analogy to the well-known proximity effects in superconductivity.Comment: 4 pages, 3 figure

    Layer resolved magnetic domain imaging of epitaxial heterostructures in large applied magnetic fields

    Get PDF
    We use X-ray Excited Luminescence Microscopy to investigate the elemental and layer resolved magnetic reversal in an interlayer exchange coupled (IEC) epitaxial Fe/Cr wedge/Co heterostructure. The transition from strongly coupled parallel Co-Fe reversal for Cr thickness tCr < 0.34 nm to weakly coupled layer independent reversal for tCr > 1.5 nm is punctuated at 0.34 < tCr < 1.5 nm by a combination of IEC guided domain wall motion and stationary zig zag domain walls. Domain walls nucleated at switching field minima are guided by IEC spatial gradients and collapse at switching field maxima.RM acknowledges funding from the European Community under the Seventh Framework Program Contract No. 247368: 3SPIN. DL acknowledges funding from the EPSRC. The work performed at the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.This is the accepted manuscript. The final version is available at http://scitation.aip.org/content/aip/journal/apl/106/7/10.1063/1.4913359

    A longitudinal study on the occurrence of Cryptosporidium and Giardia in dogs during their first year of life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The primary aim of this study was to obtain more knowledge about the occurrence of <it>Cryptosporidium </it>and <it>Giardia </it>in young dogs in Norway.</p> <p>The occurrence of these parasites was investigated in a longitudinal study by repeated faecal sampling of dogs between 1 and 12 months of age (litter samples and individual samples). The dogs were privately owned and from four large breeds. Individual faecal samples were collected from 290 dogs from 57 litters when the dogs were approximately 3, 4, 6, and 12 months old. In addition, pooled samples were collected from 43 of the litters, and from 42 of the mother bitches, when the puppies were approximately 1 and/or 2 months old.</p> <p>Methods</p> <p>The samples were purified by sucrose gradient flotation concentration and examined by immunofluorescent staining.</p> <p>Results</p> <p>128 (44.1%) of the young dogs had one or more <it>Cryptosporidium </it>positive samples, whilst 60 (20.7%) dogs had one or more <it>Giardia </it>positive samples. The prevalence of the parasites varied with age. For <it>Cryptosporidium</it>, the individual prevalence was between 5.1% and 22.5%, with the highest level in dogs < 6 months old, and declining with age. For <it>Giardia</it>, the individual prevalence was between 6.0% and 11.4%, with the highest level in dogs > 6 months old, but the differences between age groups were not statistically significant. Significant differences in prevalences were found in relation to geographic location of the dogs. Both parasites occurred at low prevalences in Northern Norway.</p> <p>Conclusion</p> <p>Both <it>Cryptosporidium </it>and <it>Giardia </it>are common in Norwegian dogs, with <it>Cryptosporidium </it>more prevalent than <it>Giardia</it>. Prevalences of the parasites were found to be influenced by age, geographical location, and infection status before weaning.</p

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications
    corecore