57 research outputs found

    Spinning cosmic strings: a general class of solutions

    Full text link
    In this work, we give a general class of solutions of the spinning cosmic string in Einstein's theory of gravity. After treating same problem in Einstein Cartan (EC) theory of gravity, the exact solution satisfying both exterior and interior space-times representing a spin fluid moving along the symmetry axis is presented in the EC theory. The existence of closed timelike curves in this spacetime are also examined

    Spacetime Defects: von K\'arm\'an vortex street like configurations

    Get PDF
    A special arrangement of spinning strings with dislocations similar to a von K\'arm\'an vortex street is studied. We numerically solve the geodesic equations for the special case of a test particle moving along twoinfinite rows of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres

    Pleba\'nski-Demia\'nski-like solutions in metric-affine gravity

    Full text link
    We consider a (non--Riemannian) metric--affine gravity theory, in particular its nonmetricity--torsion sector ``isomorphic'' to the Einstein--Maxwell theory. We map certain Einstein--Maxwell electrovacuum solutions to it, namely the Pleba\'nski--Demia\'nski class of Petrov type D metrics.Comment: 12 pages of a LaTeX-fil

    Asymptotic behaviour of cylindrical waves interacting with spinning strings

    Full text link
    We consider a family of cylindrical spacetimes endowed with angular momentum that are solutions to the vacuum Einstein equations outside the symmetry axis. This family was recently obtained by performing a complete gauge fixing adapted to cylindrical symmetry. In the present work, we find boundary conditions that ensure that the metric arising from this gauge fixing is well defined and that the resulting reduced system has a consistent Hamiltonian dynamics. These boundary conditions must be imposed both on the symmetry axis and in the region far from the axis at spacelike infinity. Employing such conditions, we determine the asymptotic behaviour of the metric close to and far from the axis. In each of these regions, the approximate metric describes a conical geometry with a time dislocation. In particular, around the symmetry axis the effect of the singularity consists in inducing a constant deficit angle and a timelike helical structure. Based on these results and on the fact that the degrees of freedom in our family of metrics coincide with those of cylindrical vacuum gravity, we argue that the analysed set of spacetimes represent cylindrical gravitational waves surrounding a spinning cosmic string. For any of these spacetimes, a prediction of our analysis is that the wave content increases the deficit angle at spatial infinity with respect to that detected around the axis.Comment: 25 pages, accepted for publication in Classical and Quantum Gravit

    Maxwell's theory on a post-Riemannian spacetime and the equivalence principle

    Get PDF
    The form of Maxwell's theory is well known in the framework of general relativity, a fact that is related to the applicability of the principle of equivalence to electromagnetic phenomena. We pose the question whether this form changes if torsion and/or nonmetricity fields are allowed for in spacetime. Starting from the conservation laws of electric charge and magnetic flux, we recognize that the Maxwell equations themselves remain the same, but the constitutive law must depend on the metric and, additionally, may depend on quantities related to torsion and/or nonmetricity. We illustrate our results by putting an electric charge on top of a spherically symmetric exact solution of the metric-affine gauge theory of gravity (comprising torsion and nonmetricity). All this is compared to the recent results of Vandyck.Comment: 9 pages, REVTeX, no figures; minor changes, version to be published in Class. Quantum Gra

    Space-time defects and teleparallelism

    Get PDF
    We consider the class of space-time defects investigated by Puntigam and Soleng. These defects describe space-time dislocations and disclinations (cosmic strings), and are in close correspondence to the actual defects that arise in crystals and metals. It is known that in such materials dislocations and disclinations require a small and large amount of energy, respectively, to be created. The present analysis is carried out in the context of the teleparallel equivalent of general relativity (TEGR). We evaluate the gravitational energy of these space-time defects in the framework of the TEGR and find that there is an analogy between defects in space-time and in continuum material systems: the total gravitational energy of space-time dislocations and disclinations (considered as idealized defects) is zero and infinit, respectively.Comment: 22 pages, no figures, to appear in the Class. Quantum Gravit

    Parity Violating Gravitational Coupling Of Electromagnetic Fields

    Full text link
    A manifestly gauge invariant formulation of the coupling of the Maxwell theory with an Einstein Cartan geometry is given, where the space time torsion originates from a massless Kalb-Ramond field augmented by suitable U(1) Chern Simons terms.We focus on the situation where the torsion violates parity, and relate it to earlier proposals for gravitational parity violation.Comment: 7 Pages, Latex . no figures, Replaced with Revtex version, many references added and typos correcte

    Covariance properties and regularization of conserved currents in tetrad gravity

    Get PDF
    We discuss the properties of the gravitational energy-momentum 3-form within the tetrad formulation of general relativity theory. We derive the covariance properties of the quantities describing the energy-momentum content under Lorentz transformations of the tetrad. As an application, we consider the computation of the total energy (mass) of some exact solutions of Einstein's general relativity theory which describe compact sources with asymptotically flat spacetime geometry. As it is known, depending on the choice of tetrad frame, the formal total integral for such configurations may diverge. We propose a natural regularization method which yields finite values for the total energy-momentum of the system and demonstrate how it works on a number of explicit examples.Comment: 36 pages, Revtex, no figures; small changes, published versio
    • …
    corecore