4,309 research outputs found

    The Song of Fire:

    Get PDF
    n/

    Auditor\u27s reporting obligation : the meaning and implementation of the fourth standard of reporting; Auditing research monograph, 1

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1006/thumbnail.jp

    Auditor\u27s reporting obligation : the meaning and implementation of the fourth standard of reporting; Auditing research monograph, 1

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1007/thumbnail.jp

    Internal Accounting Control - It\u27s the Law

    Full text link

    Aerodynamic analysis of three advanced configurations using the TranAir full-potential code

    Get PDF
    Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data

    A multi-stage design framework for the development of task-specific robotic exoskeletons

    Full text link
    © 2015 IEEE. This work presents a multi-stage design framework for developing robotic exoskeletons suited for specific tasks, such as individualized exercises that meet the needs of patients undergoing physical therapy. The framework systematically develops the exoskeleton based on the required task space, represented by a set of limb poses which may be defined directly, or indirectly using means such as motion capture. The design process seeks to maximize the poses inside and surrounding the defined task space whilst ensuring additional criteria required to perform the task are satisfied. A case study demonstrates the framework applied to develop two variations of shoulder exoskeleton suited for two specific upper limb activities. Prototype exoskeletons based on the framework's outcomes were constructed, and their suitability for use in their intended tasks were evaluated

    Implementation and evaluation of simultaneous video-electroencephalography and functional magnetic resonance imaging

    Get PDF
    The objective of this study was to demonstrate that the addition of simultaneous and synchronised video to electroencephalography (EEG)-correlated functional magnetic resonance imaging (fMRI) could increase recorded information without data quality reduction. We investigated the effect of placing EEG, video equipment and their required power supplies inside the scanner room, on EEG, video and MRI data quality, and evaluated video-EEG-fMRI by modelling a hand motor task. Gradient-echo, echo-planner images (EPI) were acquired on a 3-T MRI scanner at variable camera positions in a test object [with and without radiofrequency (RF) excitation], and human subjects. EEG was recorded using a commercial MR-compatible 64-channel cap and amplifiers. Video recording was performed using a two-camera custom-made system with EEG synchronization. An in-house script was used to calculate signal to fluctuation noise ratio (SFNR) from EPI in test object with variable camera positions and in human subjects with and without concurrent video recording. Five subjects were investigated with video-EEG-fMRI while performing hand motor task. The fMRI time series data was analysed using statistical parametric mapping, by building block design general linear models which were paradigm prescribed and video based. Introduction of the cameras did not alter the SFNR significantly, nor did it show any signs of spike noise during RF off conditions. Video and EEG quality also did not show any significant artefact. The Statistical Parametric Mapping{T} maps from video based design revealed additional blood oxygen level-dependent responses in the expected locations for non-compliant subjects compared to the paradigm prescribed design. We conclude that video-EEG-fMRI set up can be implemented without affecting the data quality significantly and may provide valuable information on behaviour to enhance the analysis of fMRI data

    Review of world experience and properties of materials for encapsulation of terrestrial photovoltaic arrays

    Get PDF
    Published and unpublished information relating to encapsulation systems and materials properties was collected by searching the literature and appropriate data bases (over 1,300 documents were selected and reviewed) and by personal contacts including site and company visits. A data tabulation summarizing world experience with terrestrial photovoltaic arrays (50 installations) is presented in the report. Based on criteria of properties, processability, availability, and cost, candidate materials were identified which have potential for use in encapsulation systems for arrays with a lifetime of over 20 years high reliability, an efficiency greater than 10 percent, a total price less than $500/kW, and a production capacity of 500,000 kW/yr. The recommended materials (all commercially available) include, depending upon the device design, various borosilicate and soda-lime glasses and numerous polymerics suitable for specific encapsulation system functions

    Quantum computing with incoherent resources and quantum jumps

    Full text link
    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify by showing how to teleport an unknown quantum state and how to efficiently prepare graph states for the implementation of measurement-based quantum computation.Comment: 5 pages, 5 figure
    corecore