2,936,409 research outputs found

    A Spin-Statistics Theorem for Certain Topological Geons

    Get PDF
    We review the mechanism in quantum gravity whereby topological geons, particles made from non-trivial spatial topology, are endowed with nontrivial spin and statistics. In a theory without topology change there is no obstruction to ``anomalous'' spin-statistics pairings for geons. However, in a sum-over-histories formulation including topology change, we show that non-chiral abelian geons do satisfy a spin-statistics correlation if they are described by a wave function which is given by a functional integral over metrics on a particular four-manifold. This manifold describes a topology changing process which creates a pair of geons from R3R^3.Comment: 21 pages, Plain TeX with harvmac, 3 figures included via eps

    Large Fluctuations in the Horizon Area and what they can tell us about Entropy and Quantum Gravity

    Get PDF
    We evoke situations where large fluctuations in the entropy are induced, our main example being a spacetime containing a potential black hole whose formation depends on the outcome of a quantum mechanical event. We argue that the teleological character of the event horizon implies that the consequent entropy fluctuations must be taken seriously in any interpretation of the quantal formalism. We then indicate how the entropy can be well defined despite the teleological character of the horizon, and we argue that this is possible only in the context of a spacetime or ``histories'' formulation of quantum gravity, as opposed to a canonical one, concluding that only a spacetime formulation has the potential to compute --- from first principles and in the general case --- the entropy of a black hole. From the entropy fluctuations in a related example, we also derive a condition governing the form taken by the entropy, when it is expressed as a function of the quantal density-operator.Comment: 35 pages, plain Tex, needs mathmacros.tex and msmacros.te

    Making Clean Energy with a Kerr Black Hole: a Tokamak Model for Gamma-Ray Bursts

    Full text link
    In this paper we present a model for making clean energy with a Kerr black hole. Consider a Kerr black hole with a dense plasma torus spinning around it. A toroidal electric current flows on the surface of the torus, which generates a poloidal magnetic field outside the torus. On the surface of the tours the magnetic field is parallel to the surface. The closed magnetic field lines winding around the torus compress and confine the plasma in the torus, as in the case of tokamaks. Though it is unclear if such a model is stable, we look into the consequences if the model is stable. If the magnetic field is strong enough, the baryonic contamination from the plasma in the torus is greatly suppressed by the magnetic confinement and a clean magnetosphere of electron-positron pairs is built up around the black hole. Since there are no open magnetic field lines threading the torus and no accretion, the power of the torus is zero. If some magnetic field lines threading the black hole are open and connect with loads, clean energy can be extracted from the Kerr black hole by the Blandford-Znajek mechanism. The model may be relevant to gamma-ray bursts. The energy in the Poynting flux produced by the Blandford-Znajek mechanism is converted into the kinetic energy of the electron-positron pairs in the magnetosphere around the black hole, which generates two oppositely directed jets of electron-positron pairs with super-high bulk Lorentz factors. The jets collide and interact with the interstellar medium, which may produce gamma-ray bursts and the afterglows.Comment: 14 pages, 1 figure, accepted by Ap

    Boundary Effects in the One Dimensional Coulomb Gas

    Full text link
    We use the functional integral technique of Edwards and Lenard to solve the statistical mechanics of a one dimensional Coulomb gas with boundary interactions leading to surface charging. The theory examined is a one dimensional model for a soap film. Finite size effects and the phenomenon of charge regulation are studied. We also discuss the pressure of disjunction for such a film. Even in the absence of boundary potentials we find that the presence of a surface affects the physics in finite systems. In general we find that in the presence of a boundary potential the long distance disjoining pressure is positive but may become negative at closer interplane separations. This is in accordance with the attractive forces seen at close separations in colloidal and soap film experiments and with three dimensional calculations beyond mean field. Finally our exact results are compared with the predictions of the corresponding Poisson-Boltzmann theory which is often used in the context of colloidal and thin liquid film systems.Comment: 28 pages, LATEX2e, 11 figures, uses styles[12pt] resubmission because of minor corrections to tex

    Sudan Grass, Soybeans, and Other Supplementary Hay and Pasture Crops

    Get PDF
    PDF pages:

    How Future Space-Based Weak Lensing Surveys Might Obtain Photometric Redshifts Independently

    Full text link
    We study how the addition of on-board optical photometric bands to future space-based weak lensing instruments could affect the photometric redshift estimation of galaxies, and hence improve estimations of the dark energy parameters through weak lensing. Basing our study on the current proposed Euclid configuration and using a mock catalog of galaxy observations, various on-board options are tested and compared with the use of ground-based observations from the Large Synoptic Survey Telescope (LSST) and Pan-STARRS. Comparisons are made through the use of the dark energy Figure of Merit, which provides a quantifiable measure of the change in the quality of the scientific results that can be obtained in each scenario. Effects of systematic offsets between LSST and Euclid photometric calibration are also studied. We find that adding two (U and G) or even one (U) on-board optical band-passes to the space-based infrared instrument greatly improves its photometric redshift performance, bringing it close to the level that would be achieved by combining observations from both space-based and ground-based surveys while freeing the space mission from reliance on external datasets.Comment: Accepted for publication in PASP. A high-quality version of Fig 1 can be found on http://www.ap.smu.ca/~sawicki/DEphoto

    On the duration of long GRBs: effects of black hole spin

    Full text link
    In the frame of the collapsar model for long gamma ray bursts (GRBs), we investigate the formation of a torus around a spinning BH and we check what rotational properties a progenitor star must have in order to sustain torus accretion over relatively long activity periods. We also study the time evolution of the BH spin parameter. We take into account the coupling between BH mass, its spin parameter and the critical specific angular momentum of accreting gas, needed for the torus to form. The large BH spin reduces the critical angular momentum which in turn can increase the GRB duration with respect to the Schwarzschild BH case. We quantify this effect and estimate the GRB durations in three cases: when a hyper accreting torus operates or a BH spins very fast or both. We show under what conditions a given progenitor star produces a burst that can last as short as several seconds and as long as several hundred of seconds. Our models indicate that it is possible for a single collapse to produce three kinds of jets: (1) a very short, lasting between a fraction of a second and a few seconds, 'precursor' jet, powered only by a hyper accreting torus before the BH spins up, (2) an 'early' jet, lasting several tens of seconds and powered by both hyper accretion and BH rotation, and (3) a 'late' jet, powered only by the spinning BH.Comment: 13 pages; 9 figures; ApJ in pres

    Microscopic Analysis of Low-Frequency Flux Noise in YBa2_2Cu3_3O7_7 Direct Current Superconducting Quantum Interference Devices

    Full text link
    We use low-temperature scanning electron microscopy combined with SQUID detection of magnetic flux to image vortices and to investigate low-frequency flux noise in YBa2_2Cu3_3O7_7 thin film SQUIDs. The low-frequency flux noise shows a nonlinear increase with magnetic cooling field up to 60 μ\muT. This effect is explained by the surface potential barrier at the SQUID hole. By correlating flux noise data with the spatial distribution of vortices, we obtain information on spatial fluctuations of vortices on a microscopic scale, e.g. an average vortex hopping length of approximately 10 nm.Comment: submitted to Applied Physics Letter
    corecore