13,255 research outputs found

    Cation mono- and co-doped anatase TiO2_2 nanotubes: An {\em ab initio} investigation of electronic and optical properties

    Get PDF
    The structural, electronic, and optical properties of metal (Si, Ge, Sn, and Pb) mono- and co-doped anatase TiO2_{2} nanotubes are investigated, in order to elucidate their potential for photocatalytic applications. It is found that Si doped TiO2_{2} nanotubes are more stable than those doped with Ge, Sn, or Pb. All dopants lower the band gap, except the (Ge, Sn) co-doped structure, the decrease depending on the concentration and the type of dopant. Correspondingly, a redshift in the optical properties for all kinds of dopings is obtained. Even though a Pb mono- and co-doped TiO2_{2} nanotube has the lowest band gap, these systems are not suitable for water splitting, due to the location of the conduction band edges, in contrast to Si, Ge, and Sn mono-doped TiO2_{2} nanotubes. On the other hand, co-doping of TiO2_{2} does not improve its photocatalytic properties. Our findings are consistent with recent experiments which show an enhancement of light absorption for Si and Sn doped TiO2_{2} nanotubes.Comment: revised and updated, 23 pages (preprint style), 7 figures, 5 table

    TeV Scale Seesaw and a flavorful Z' at the LHC

    Full text link
    Small neutrino masses and their large mixing angles can be generated at the TeV scale by augmenting the Standard Model with an additional generation dependent, anomaly-free U(1)_{nu} symmetry, in the presence of three right-handed neutrinos. The Z' gauge boson associated with the breaking of the U(1)_{nu} symmetry can be produced at the LHC. The flavorful nature of the Z' can be established by measuring its non-universal couplings to the charged leptons as determined by the lepton's U(1)_{nu} charges, which also govern the neutrino flavor structure. While the LHC has the potential of discovering the Z' up to M_{Z'} = 4.5 TeV with 100 fb^(-1) data at the center of mass energy sqrt{s} = 14 TeV, to establish the flavorful nature of the Z' requires much higher integrated luminosity. For our bench mark parameters that are consistent with neutrino oscillation data, at sqrt{s} = 14 TeV, a 5 sigma distinction between the dielectron and dimuon channels for M_{Z'} = 3 TeV requires 500 fb^(-1) of data. We find that the forward backward asymmetry distributions can also be useful in distinguishing the dielectron and dimuon channels in the low invariant mass and transverse momentum regions.Comment: 9 pages, 13 figures; v2: version to appear in Phys. Rev.

    Fishermen Alleviation Poverty Model in the North Coastal East Java

    Full text link
    Poverty is a multidimensional problem that the approach to eradicate poverty must also be multidimensional. The study aims to formulate a model of poverty alleviation in coastal fishing in the North Coast of East Java. Grounded research approach used to determine the causes, impacts and implications of poverty fishermen. The results showed that the main cause of poverty that occurred in the three districts in East Java\u27s north coast is different from one another. In Gresik district, the major cause of poverty is law enforcements that do not support fishermen and overfishing. While Lamongan more due to low fish prices and capital problems. While in Tuban fishermen due to limited infrastructure and lazy and extravagant lifestyle of the fishermen. These differences lead to different coping strategies so that later can form a concept model of poverty alleviation North Coast fishermen in East Java

    BTZ Black Hole with Gravitational Chern-Simons: Thermodynamics and Statistical Entropy

    Full text link
    Recently, the BTZ black hole in the presence of the gravitational Chern-Simons (GCS) term has been studied and it has been found that the usual thermodynamical quantities, like as the black hole mass, angular momentum, and black hole entropy, are modified. But, for large values of the GCS coupling, where the modification terms dominate the original terms, some exotic behaviors occur, like as the roles of the mass and angular momentum are interchanged and the black hole entropy depends more on the innerinner-horizon area than the outer one. A basic physical problem of this system is that the form of entropy does not guarantee the second law of thermodynamics, in contrast to the Bekenstein-Hawking (BH) entropy. Moreover, this entropy does notnot agree with the statistical entropy, in contrast to a good agreement for small values of the GCS coupling. Here I find that there is another entropy formula where the usual BH form dominates the inner-horizon term again, as in the small GCS coupling, such as the second law of thermodynamics can be guaranteed. I compare the result of the holographic approach with the classical- symmetry-algebra-based approach and I find exact agreements even with the higher-derivative term of GCS. This provides a non-trivial check of the AdS/CFT-correspondence in the presence of higher-derivative terms in the gravity action.Comment: Accepted in Phys. Rev. D; Shortened version, Raised a new question of the validity of the first law (No. 5 in Sec.5), Clarified the relation with the Euclidean action approach for 1/1/\hbar factor (below (3.2)

    Electric Current Focusing Efficiency in Graphene Electric Lens

    Full text link
    In present work, we theoretically study the electron wave's focusing phenomenon in a single layered graphene pn junction(PNJ) and obtain the electric current density distribution of graphene PNJ, which is in good agreement with the qualitative result in previous numerical calculations [Science, 315, 1252 (2007)]. In addition, we find that for symmetric PNJ, 1/4 of total electric current radiated from source electrode can be collected by drain electrode. Furthermore, this ratio reduces to 3/16 in a symmetric graphene npn junction. Our results obtained by present analytical method provide a general design rule for electric lens based on negative refractory index systems.Comment: 13 pages, 7 figure

    Facial component-landmark detection with weakly-supervised LR-CNN

    Full text link
    © 2013 IEEE. In this paper, we propose a weakly supervised landmark-region-based convolutional neural network (LR-CNN) framework to detect facial component and landmark simultaneously. Most of the existing course-to-fine facial detectors fail to detect landmark accurately without lots of fully labeled data, which are costly to obtain. We can handle the task with a small amount of finely labeled data. First, deep convolutional generative adversarial networks are utilized to generate training samples with weak labels, as data preparation. Then, through weakly supervised learning, our LR-CNN model can be trained effectively with a small amount of finely labeled data and a large amount of generated weakly labeled data. Notably, our approach can handle the situation when large occlusion areas occur, as we localize visible facial components before predicting corresponding landmarks. Detecting unblocked components first helps us to focus on the informative area, resulting in a better performance. Additionally, to improve the performance of the above tasks, we design two models as follows: 1) we add AnchorAlign in the region proposal networks to accurately localize components and 2) we propose a two-branch model consisting classification branch and regression branch to detect landmark. Extensive evaluations on benchmark datasets indicate that our proposed approach is able to complete the multi-task facial detection and outperforms the state-of-the-art facial component and landmark detection algorithms

    Remarks on the Scalar Graviton Decoupling and Consistency of Horava Gravity

    Full text link
    Recently Horava proposed a renormalizable gravity theory with higher derivatives by abandoning the Lorenz invariance in UV. But there have been confusions regarding the extra scalar graviton mode and the consistency of the Horava model. I reconsider these problems and show that, in the Minkowski vacuum background, the scalar graviton mode can be consistency decoupled from the usual tensor graviton modes by imposing the (local) Hamiltonian as well as the momentum constraints.Comment: Some clarifications regarding the projectable case added, Typos corrected, Comments (Footnote No.9, Note Added) added, References updated, Accepted in CQ

    The effect of multiple sclerosis on carotid baroreflex control of heart rate and blood pressure

    Get PDF
    Multiple sclerosis (MS) is marked by conduction abnormalities within the central nervous system that can lead to impaired blood pressure regulation. However, the impact of this disease on dynamic neural control—responsiveness and timing (i.e., latency)—of blood pressure has not been examined. Utilizing a variable neck chamber system, we tested the hypothesis that patients with MS (MS: n=4) exhibit an altered response following baroreflex perturbation compared to sex and age matched healthy controls (CON: n=4). At rest, 5-sec pulses of neck suction (NS; -60 Torr) and neck pressure (NP; +40 Torr) were applied to simulate carotid hypertension and hypotension, respectively. Mean arterial pressure (MAP; Finometer) and heart rate (HR) were continuously measured in response to the perturbations. Carotid baroreflex (CBR) latencies (i.e., time-to-peak responses) were examined using carotid-cardiac (peak HR responses), carotid-vasomotor (peak MAP responses), and change in MAP at the peak HR response of the corresponding stimuli (MAP@HRpeak), all of which were not significant for both NP and NS. Following NS, responses in MAP (MS: -12±5, CON: -10±3 mmHg; p=0.43) and HR (MS: -9±3, CON: -8±4 BPM; p=0.58) were similar between groups. Following administration of NP, HR responses (MS: 4±2, CON: 5±4 BPM; p=0.47) were no different. However, the differences found in MAP were significant (MS: 5±2, CON: 8±2 mmHg; p=0.05), providing some evidence that baroreceptor responsiveness may be compromised when faced with a hypotensive challenge

    Relating Leptogenesis to Low Energy Flavor Violating Observables in Models with Spontaneous CP Violation

    Full text link
    In the minimal left-right symmetric model, there are only two intrinsic CP violating phases to account for all CP violation in both the quark and lepton sectors, if CP is broken spontaneously by the complex phases in the VEV's of the scalar fields. In addition, the left- and right-handed Majorana mass terms for the neutrinos are proportional to each other due to the parity in the model. This is thus a very constrained framework, making the existence of correlations among the CP violation in leptogenesis, neutrino oscillation and neutrinoless double beta decay possible. In these models, CP violation in the leptonic sector and CP violation in the quark sector are also related. We find, however, that such connection is rather weak due to the large hierarchy in the bi-doublet VEV required by a realistic quark sector.Comment: RevTeX4, 21 pages; v2: references added, version to appear in Phys. Rev.
    corecore