966 research outputs found
A New Model for Family Resource Allocation Among Siblings: Competition, Forbearance, and Support
Previous research analyzing within-family education resource allocation usually employs the sibship and birth order of a child as explanatory variables. We argue in this paper that to correctly characterize the resource competition and support scenario within a family, one should identify the Sex, Seniority, and most importantly Age Difference of a child’s sibling structure, and hence we call our analysis a SSAD model of family resource allocation. We show that siblings with different combinations of SSAD may play distinct roles in family resource allocation. Ignoring such facts may distort the significance and/or direction of the prediction. We support our analysis with empirical evidence using data from Taiwan.
Ribosomal protein synthesis is not regulated at the translational level in Saccharomyces cerevisiae: balanced accumulation of ribosomal proteins L16 and rp59 is mediated by turnover of excess protein.
We have investigated the mechanisms whereby equimolar quantities of ribosomal proteins accumulate and assemble into ribosomes of the yeast Saccharomyces cerevisiae. Extra copies of the cry1 or RPL16 genes encoding ribosomal proteins rp59 or L16 were introduced into yeast by transformation. Excess cry1 or RPL16 mRNA accumulated in polyribosomes in these cells and was translated at wild-type rates into rp59 or L16 proteins. These excess proteins were degraded until their levels reached those of other ribosomal proteins. Identical results were obtained when the transcription of RPL16A was rapidly induced using GAL1-RPL16A promoter fusions, including a construct in which the entire RPL16A 5\u27-noncoding region was replaced with the GAL1 leader sequence. Our results indicate that posttranscriptional expression of the cry1 and RPL16 genes is regulated by turnover of excess proteins rather than autogenous regulation of mRNA splicing or translation. The turnover of excess rp59 or L16 is not affected directly by mutations that inactivate vacuolar hydrolases
Efficient Padding Oracle Attacks on Cryptographic Hardware
We show how to exploit the encrypted key import functions of a variety of different cryptographic devices to reveal the imported key. The attacks are padding oracle attacks, where error messages resulting from incorrectly padded plaintexts are used as a side channel. In the asymmetric encryption case, we modify and improve Bleichenbacher’s attack on RSA PKCS#1v1.5 padding, giving new cryptanalysis that allows us to carry out the ‘million message attack’ in a mean of 49 000 and median of 14 500 oracle calls in the case of cracking an unknown valid ciphertext under a 1024 bit key (the original algorithm takes a mean of 215 000 and a median of 163 000 in the same case). We show how implementation details of certain devices admit an attack that requires only 9 400 operations on average (3 800 median). For the symmetric case, we adapt Vaudenay’s CBC attack, which is already highly efficient. We demonstrate the vulnerabilities on a number of commercially available cryptographic devices, including security tokens, smartcards and the Estonian electronic ID card. The attacks are efficient enough to be practical: we give timing details for all the devices found to be vulnerable, showing how our optimisations make a qualitative difference to the practicality of the attack. We give mathematical analysis of the effectiveness of the attacks, extensive empirical results, and a discussion of countermeasures and manufacturer reaction
Program Repair Suggestions from Graphical State-Transition Specifications
Abstract. In software engineering, graphical formalisms, like state-transition tables and automata, are very often indispensable parts of the specifications. Such a formalism usually leads to specification re-finement that maintains the simulation/bisimulation relation between an implementation and a specification. We investigate how to use formal techniques to generate suggestions for repairing a program that breaks the bisimulation relation with a graphical specification. We use state graphs as a unified representation of the program models and specifica-tions. We propose a technique that may evaluate the cost of a repair. We present a PTIME heuristic algorithm that suggests how to repair a model state graph. We then explain how to derive repair suggestions for programs from the repair for state graphs. Finally, we report our experi-ment that checks the performance of our repair algorithms and the costs of our repairs. Key words: state graph, state transition relation, repair, graph theory, cost, evaluation, equivalence, bisimulation
Output feedback robust H∞ control with D-stability and variance constraints: A parametrization approach
This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2005 Springer Ltd.In this paper, we study the problem of robust H∞ controller design for uncertain continuous-time systems with variance and D-stability constraints. The parameter uncertainties are allowed to be unstructured but norm-bounded. The aim of this problem is the design of an output feedback controller such that, for all admissible uncertainties, the closed-loop poles be placed within a specified disk, the H∞ norm bound constraint on the disturbance rejection attenuation be guaranteed, and the steady-state variance for each state of the closed-loop system be no more than the prescribed individual upper bound, simultaneously. A parametric design method is exploited to solve the problem addressed. Sufficient conditions for the existence of the desired controllers are derived by using the generalized inverse theory. The analytical expression of the set of desired controllers is also presented. It is shown that the obtained results can be readily extended to the dynamic output feedback case and the discrete-time case
Bahadur Representation for the Nonparametric M-Estimator Under alpha-mixing Dependence
Under the condition that the observations, which come from a high-dimensional population (X,Y), are strongly stationary and strongly-mixing, through using the local linear method, we investigate, in this paper, the strong Bahadur representation of the nonparametric M-estimator for the unknown function m(x)=arg minaIE(r(a,Y)|X=x), where the loss function r(a,y) is measurable. Furthermore, some related simulations are illustrated by using the cross validation method for both bivariate linear and bivariate nonlinear time series contaminated by heavy-tailed errors. The M-estimator is applied to a series of S&P 500 index futures andspot prices to compare its performance in practice with the usual squared-loss regression estimator
Two-frequency shell model for hypernuclei and meson-exchange hyperon-nucleon potentials
A two-frequency shell model is proposed for investigating the structure of hypernuclei starting with a hyperon-nucleon potential in free space. In a calculation using the folded-diagram method for Λ¹⁶O, the Λ single particle energy is found to have a saturation minimum at an oscillator frequency ħωΛ≈10MeV, for the Λ orbit, which is considerably smaller than ħωN=14MeV for the nucleon orbit. The spin-dependence parameters derived from the Nijmegen NSC89 and NSC97f potentials are similar, but both are rather different from those obtained with the Jülich-B potential. The ΛNN three-body interactions induced by ΛN-ΣN transitions are important for the spin parameters, but relatively unimportant for the low-lying states of Λ¹⁶O.Yiharn Tzeng, S. Y. Tsay Tzeng, T. T. S. Kuo, T.-S.H. Lee, and V. G. D. Stok
Simulation Subsumption in Ramsey-Based Büchi Automata Universality and Inclusion Testing
International audienc
- …