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Abstract. There are two main classes of methods for checking univer-
sality and language inclusion of Büchi-automata: Rank-based methods
and Ramsey-based methods. While rank-based methods have a better
worst-case complexity, Ramsey-based methods have been shown to be
quite competitive in practice [9, 8]. It was shown in [9] (for universality
checking) that a simple subsumption technique, which avoids exploring
certain cases, greatly improves the performance of the Ramsey-based
method. Here, we present a much more general subsumption technique
for the Ramsey-based method, which is based on using simulation pre-
order on the states of the Büchi-automata. This technique applies to both
universality and inclusion checking, yielding a substantial performance
gain over the previous simple subsumption approach of [9].

1 Introduction

Universality and language-inclusion checking are important problems in the the-
ory of automata, with significant applications, e.g., in model-checking. More
precisely, the problem of checking whether an implementation meets a specifi-
cation can be formulated as a language inclusion problem. The behavior of the
implementation is represented by an automaton A, the specification is given by
an automaton B, and one checks whether L(A) ⊆ L(B). As we are generally in-
terested in non-halting computations, we use automata as acceptors of languages
over infinite words. In this paper, we concentrate on Büchi automata, where ac-
cepting runs are those containing some accepting state infinitely often.

A näıve inclusion-checking algorithm involves complementation: One has that
L(A) ⊆ L(B) iff L(A)∩L(B) = ∅. However, the complementary automaton B is,
in the worst case, exponentially bigger than the original automaton B. Hence,
direct complementation should be avoided.

Among methods that keep the complementation step implicit, the following
two have recently gained interest: Rank-based and Ramsey-based methods. The
former uses a rank-based analysis of rejecting runs [13], leading to a simplified
complementation procedure. The latter is based on Büchi’s original combinato-
rial Ramsey-based argument for showing closure of ω-regular languages under
complementation [3], which has been improved and shown to be implementable
in [15]. Notice that a high worst-case complexity is unavoidable, since both uni-
versality and language-inclusion testing are PSPACE-complete problems.

However, in practice, subsumption techniques can often greatly speed up
universality/inclusion checking by avoiding the exploration of certain cases that



are subsumed by other cases. Recently, [4] described a simple set-inclusion-based
subsumption technique for speeding up the rank-based technique, for both uni-
versality and language inclusion checking, capable of handling automata of sev-
eral order of magnitude larger than previously possible. Similarly, [9] improved
the Ramsey-based method (but only for universality checking) by a simple sub-
sumption technique that compares finite labeled graphs (using set-inclusion on
the set of arcs, plus an order on the labels; see the last par. in Section 3).

We improve the Ramsey-based approach. The contribution of this paper is
twofold. First, we show how to employ simulation preorder to generalize the
simple subsumption technique of [9] for Ramsey-based universality checking.
Furthermore, we introduce a simulation-based subsumption relation for Ramsey-
based language inclusion checking, thus extending the theory of subsumption to
the realm of Ramsey-based inclusion checking.

Experimental results show that our algorithm based on simulation subsump-
tion significantly and consistently outperforms the algorithm based on the orig-
inal subsumption of [9]. We perform the evaluation on Büchi automata models
of several mutual exclusion algorithms (the largest case has several thousands
of states and tens of thousands of transitions), random Büchi automata gener-
ated from LTL formulae, and Büchi automata generated from the random model
of Tabakov and Vardi [17]. In many cases, the difference between the two ap-
proaches is very significant. For example, our approach finishes an experiment on
the Bakery algorithm in minutes, while the original approach cannot handle it in
hours. In the largest examples generated from LTL formulae, our approach is on
average 20 times faster than the original one when testing universality and more
than 1900 times faster when testing language inclusion. All relevant information
is provided online [20] enabling interested readers to reproduce our experiments.

2 Preliminaries

A Büchi Automaton (BA) A is a tuple (Σ,Q, I, F, δ) where Σ is a finite alphabet,
Q is a finite set of states, I ⊆ Q is a non-empty set of initial states, F ⊆ Q is
a set of accepting states, and δ ⊆ Q × Σ × Q is the transition relation. For
convenience, we write p a−→ q instead of (p, a, q) ∈ δ.

A run of A on a word w = a1a2 . . . ∈ Σω starting in a state q0 ∈ Q is
an infinite sequence q0q1q2 . . . such that qj−1

aj−→ qj for all j > 0. The run is
accepting iff qi ∈ F for infinitely many i. The language of A is the set L(A) =
{w ∈ Σω | A has an accepting run on w starting from some q0 ∈ I}.

A path in A on a finite word w = a1 . . . an ∈ Σ+ is a finite sequence q0q1 . . . qn
where qj−1

aj−→ qj for all 0 < j ≤ n. The path is accepting iff qi ∈ F for some
0 ≤ i ≤ n. We define the following predicates for p, q ∈ Q: (1) p w=⇒

F
q iff there is

an accepting path on w from p to q. (2) p w=⇒ q iff there is a path (not necessarily

accepting) on w from p to q. (3) p
w

6=⇒ q iff there is no path on w from p to q.
Define E = Q × {0, 1,−1} × Q and let GA be the largest subset of 2E

whose elements contain exactly one member of {〈p, 0, q〉, 〈p, 1, q〉, 〈p,−1, q〉} for
any p, q ∈ Q. Each element in GA is a {0, 1,−1}-arc-labeled graph on Q.
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For each pair of states p, q ∈ Q, we define the following three sets of languages:
(1) L(p, 1, q) = {w ∈ Σ+ | p w=⇒

F
q}, (2) L(p, 0, q) = {w ∈ Σ+ | p w=⇒ q ∧

¬
(
p

w=⇒
F

q
)
}, (3) L(p,−1, q) = {w ∈ Σ+ | p

w

6=⇒ q}. As in [9], the language of

a graph g ∈ GA is defined as the intersection of the languages of arcs in g, i.e.,
L(g) =

⋂
〈p,a,q〉∈g L(p, a, q). Notice that the languages of the graphs in GA form

a partition of Σ+ since they are intersections of languages of the arcs. Define
Ygh to be the ω-regular language L(g) · L(h)ω.

Lemma 1. (1) Σω =
⋃
g,h∈GA Ygh. (2) For g, h ∈ GA s.t. L(g),L(h) 6= ∅,

either Ygh ∩ L(A) = ∅ or Ygh ⊆ L(A). (3) L(A) =
⋃
g,h∈GA∧Ygh∩L(A)=∅ Ygh.

In fact, Lemma 1 is a relaxed version of the lemma proved by a Ramsey-based
argument described in [15, 8, 9]. A proof can be found in Appendix A.

3 Ramsey-based Universality Testing

Based on Lemma 1, one can construct an algorithm for checking universality of
BA [8]. This type of algorithm is said to be Ramsey-based since the proof of
Lemma 1 relies on the infinite Ramsey theorem. Lemma 1 implies that L(A)
is universal iff ∀g, h ∈ GA : Ygh ⊆ L(A). Since L(g) = ∅ or L(h) = ∅ implies
Ygh ⊆ L(A), it suffices to build and check graphs with nonempty languages in
GA when testing universality.

As proposed in [8, 9, 12], the set GfA = {g ∈ GA | L(g) 6= ∅} can be generated
iteratively as follows. First, given g, h ∈ GA, their composition g;h is defined as

{〈p,−1, q〉 | ∀t ∈ Q : (〈p, a, t〉 ∈ g ∧ 〈t, b, q〉 ∈ h)→ (a = −1 ∨ b = −1)} ∪
{〈p, 0, q〉 | ∃r ∈ Q : 〈p, 0, r〉 ∈ g ∧ 〈r, 0, q〉 ∈ h ∧

∧ ∀t ∈ Q : (〈p, a, t〉 ∈ g ∧ 〈t, b, q〉 ∈ h)→ (a 6= 1 ∧ b 6= 1)} ∪
{〈p, 1, q〉 | ∃r ∈ Q : 〈p, a, r〉 ∈ g ∧ 〈r, b, q〉 ∈ h ∧ ¬(a 6= 1 ∧ b 6= 1)}.

For all a ∈ Σ, define the single-character graph ga = {〈p,−1, q〉 | q /∈ δ(p, a)} ∪
{〈p, 0, q〉 | p ∈ (Q\F )∧q ∈ (δ(p, a)\F )} ∪{〈p, 1, q〉 | q ∈ δ(p, a)∧{p, q}∩F 6= ∅}.
Let G1

A = {ga | a ∈ Σ}. As stated in Lemma 2, one can obtain GfA by repeatedly
composing graphs in G1

A until a fixpoint is reached.

Lemma 2. A graph g is in GfA iff ∃g1, . . . , gn ∈ G1
A : g = g1; . . . ; gn.

It remains to sketch how to check that no pair 〈g, h〉 of graphs g, h ∈ GfA
is a counterexample to universality, which, by Point 3 of Lemma 1, reduces to
testing Ygh ∩ L(A) 6= ∅. The so called lasso-finding test, proposed in [9], can
be used for this purpose. A pair of graphs 〈g, h〉 passes the lasso-finding test
(denoted LFT (g , h)) iff there is an arc 〈p, a0, q0〉 in g and an infinite sequence
of arcs 〈q0, a1, q1〉, 〈q1, a2, q2〉, . . . in h s.t. p ∈ I, ai ∈ {0, 1} for all i ∈ N, and
aj = 1 for infinitely many j ∈ N. The following lemma is proved in Appendix B.
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Algorithm 1: Ramsey-based Universality Checking
Input: A BA A = (Σ,Q, I, F, δ), the set of all single-character graphs G1

A
Output: TRUE if A is universal. Otherwise, FALSE.
Next := G1

A; Processed := ∅;1

while Next 6= ∅ do2

Pick and remove a graph g from Next ;3

foreach h ∈ Processed do4

if ¬LFT (g , h) ∨ ¬LFT (h, g) ∨ ¬LFT (g , g) then return FALSE ;5

Add g to Processed ;6

foreach h ∈ G1
A do if g;h /∈ Processed then Add g;h to Next ;7

return TRUE ;8

Lemma 3. L(A) is universal iff LFT (g , h) for all g, h ∈ GfA.

To be more specific, the procedure for the lasso-finding test works as follows.
It (1) finds all 1-SCCs (strongly connected components that contain only {0, 1}-
labeled arcs and at least one of the arcs is 1-labeled) in h, (2) records the set
of states Th from which there is an {0, 1}-labeled path to some state in some
1-SCCs, (3) records the set of states Hg such that for all q ∈ Hg, there exists an
arc 〈p, a, q〉 ∈ g for some p ∈ I and a ≥ 0, and then (4) checks if Hg ∩ Th 6= ∅.
We have LFT (g , h) iff Hg ∩Th 6= ∅. This procedure is polynomial in the number
of {0, 1}-labeled arcs in g and h.

Finally, Algorithm 1 gives a näıve universality test obtained by combining the
above principles for generatingGfA and using LFT . A more efficient version of the
algorithm is given in [9], using the following idea. For f, g, h ∈ GA, we say that
g v h iff for each arc 〈p, a, q〉 ∈ g, there is an arc 〈p, a′, q〉 ∈ h such that a ≤ a′.
If g v h, we have that (1) LFT (f , g) =⇒ LFT (f , h) and (2) LFT (g , f ) =⇒
LFT (h, f ) for all f ∈ GA . Since the algorithm searches for counterexamples
to universality, the tests on h are subsumed by the tests on g, and thus h can
be discarded. We refer to this method, which is based on the relation v, as
subsumption, in contrast to our more general simulation subsumption which is
described in the next section.

4 Improving Universality Testing via Simulation

In this section, we describe our technique to use simulation-based subsumption
in order to accelerate the Ramsey-based universality test [9] for Büchi automata.

A simulation on a BA A = (Σ,Q, I, F, δ) is a relation R ⊆ Q×Q such that
pRr only if (1) p ∈ F =⇒ r ∈ F , and (2) for every transition p

a−→ p′, there is
a transition r

a−→ r′ such that p′Rr′. It can be shown that there exists a unique
maximal simulation, which is a preorder (called simulation preorder and denoted
by �A or just � when A is clear from the context), computable in time O(|Σ||δ|)
[10, 11]. The relation ' = � ∩ � is called simulation equivalence.
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If A is interpreted as an automaton over finite words, � implies language
containment, and quotienting w.r.t. ' preserves the regular language. If A is
interpreted as a BA, then the particular type of simulation defined above is
called direct simulation. It implies ω-language containment, and (unlike for fair
simulation [6]) quotienting w.r.t. ' preserves the ω-regular language of A.

Our method for accelerating the Ramsey-based universality test [9] of A is
based on two optimizations which we describe below. We will also show correct-
ness of the optimizations through Lemmas 4–8 (see below).

Optimization 1. First, we show that it is sufficient to generate graphs in GfA
that are minimal not only w.r.t. v, but w.r.t. a weaker relation, referred to as
the simulation-subsumption-based relation v∀∃.

Definition 1. For any g, h ∈ GA, we say that g v∀∃ h iff for every arc 〈p, a, q〉 ∈
g, there exists an arc 〈p, a′, q′〉 ∈ h such that a ≤ a′ and q � q′.

Indeed, by Lemma 7, for any graphs g, h ∈ GfA such that g v∀∃ h, we can
ignore all lasso-finding tests related to h. More precisely, the lemma implies that,
for any f ∈ GfA, LFT (g , f ) =⇒ LFT (h, f ) and LFT (f , g) =⇒ LFT (f , h).
Moreover, by Lemma 6, graph composition is monotonic w.r.t. v∀∃: the compo-
sition of smaller graphs will yield smaller graphs, and hence we can also ignore
all lasso-finding tests related to any extension h; f of h by some f ∈ GfA.

Optimization 2. Next, we show that even the structure of the particular graphs
in GA can be simplified via simulation-subsumption allowing us to replace some
{0, 1}-labeled arcs by negative arcs. Since the time complexity of the lasso-finding
test is polynomial in the number {0, 1}-labeled arcs, such a simplification can
make the test more time efficient.

For the purpose above, we define a (possibly non-deterministic) operation
Min that maps each graph g ∈ GA to a graph Min(g) ∈ GA such that Min(g) 6∗

g, where 6∗ is defined as follows.

Definition 2. For any graphs g, h ∈ GA, we write g 6 h iff there exist arcs
〈p, a, q〉 ∈ h and 〈p, a′, q′〉 ∈ g ∩ h s.t. a ≤ a′, q � q′, and g = (h \ {〈p, a, q〉}) ∪
{〈p, a′′, q〉} where a′′ ≤ a. The relation 6∗ is the transitive closure of 6.

Here, g 6∗ h means that g is either equal to h or it is a reduced version of
h that can be derived from h by weakening some of the arcs that are anyway
“simulation covered” by other arcs present both in g and h. We write GmA =
{g ∈ GA | ∃h ∈ GfA : g 6∗ h} to denote the set of reduced versions of graphs
with nonempty languages.

In practice, Min can be implemented such that it returns a graph which is
as 6∗-small as possible (meaning that as many arcs as possible will be restricted
down to −1).

Concerning the correctness of Optimization 2, note that the relation 6∗ does
not preserve the language of graphs (and often for g 6∗ h, L(g) = ∅ when
L(h) 6= ∅). However, by Lemma 4 below, graphs related by 6∗ are equivalent
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w.r.t. the v∀∃ relation. That is why, by Lemma 7, we can replace lasso-finding
tests on graphs from GfA by graphs from GmA . Moreover, by Lemma 8, GmA is
closed under composition, and composition of graphs in GmA is monotone w.r.t.
v∀∃ in the sense of Lemma 6. Thus, it suffices to consider just graphs in GmA .

Correctness of the Optimizations. Let '∀∃ = v∀∃ ∩ (v∀∃)−1. The definition of
6 and 6∗ together with transitivity of '∀∃ imply the following basic lemma.

Lemma 4. For any g, h ∈ GA, if g 6∗ h, then g '∀∃ h.

Next, we prove an auxiliary lemma, which is subsequently used to prove
Lemma 6, expressing the needed monotonicity of composition of graphs from
GmA (in fact, the lemma is even a bit more general than that).

Lemma 5. Let g be a graph in GmA . We have that 〈p, a, q〉 ∈ g ∧ p � p′ implies
∃〈p′, a′, q′〉 ∈ g : a ≤ a′ ∧ q � q′.

Proof. If a = −1, the lemma trivially holds (e.g., by taking q′ = q). Assume
therefore a ∈ {0, 1}. From g ∈ GmA , there is some g′ ∈ GfA such that g 6∗ g′.
Since L(g′) 6= ∅ and a ∈ {0, 1}, there is some word w ∈ L(g′) such that p w=⇒ q.
Since p � p′, there is some q′′ such that p′ w=⇒ q′′, q � q′′, and if p w=⇒

F
q, then

p′
w=⇒
F

q′′. Since w ∈ L(g′), 〈p′, a′′, q′′〉 ∈ g′ for a ≤ a′′. From Lemma 4, we get

that there is an arc 〈p′, a′, q′〉 ∈ g such that a ≤ a′′ ≤ a′ and q � q′′ � q′. ut

Lemma 6. Let f, g, f ′ ∈ GA and g′ ∈ GmA be graphs s.t. f v∀∃ f ′ and g v∀∃ g′.
Then f ; g v∀∃ f ′; g′.

Proof. We consider an arc 〈p, c, r〉 in f ; g and show that f ′; g′ must contain
a larger arc w.r.t. v∀∃. The case c = −1 is trivial. For c ∈ {0, 1} there must be
arcs 〈p, a, q〉 ∈ f and 〈q, b, r〉 ∈ g where a, b ∈ {0, 1} and c = max({a, b}). Since
f v∀∃ f ′, there is an arc 〈p, a′, q′〉 ∈ f ′ with a ≤ a′ and q � q′. Since g v∀∃ g′,
there is an arc 〈q, b′, r′〉 ∈ g′ with b ≤ b′ and r � r′. Since g′ ∈ GmA , Lemma 5
implies that there is an arc 〈q′, b′′, r′′〉 ∈ g′ s.t. b ≤ b′ ≤ b′′ and r � r′ � r′′. Thus
〈p, c′′, r′′〉 ∈ f ′; g′ where c = max({a, b}) ≤ max({a′, b′′}) ≤ c′′ and r � r′′. ut

Below, we prove a lemma allowing us to replace lasso-finding tests on graphs
by lasso-finding tests on (minimized versions of) smaller graphs.

Lemma 7. Let e, f , g, h be graphs in GA such that {f, h} ∩GmA 6= ∅, e v∀∃ g,
and f v∀∃ h. Then LFT (e, f ) =⇒ LFT (g , h).

Proof. If LFT (e, f ), there exist an arc 〈p, a0, q0〉 ∈ e and an infinite sequence of
arcs 〈q0, a1, q1〉, 〈q1, a2, q2〉, . . . in f s.t. p ∈ I, ai ∈ {0, 1} for all i, and aj = 1
for infinitely many j. By the premise e v∀∃ g, there is 〈p, a′0, q′0〉 ∈ g s.t. a0 ≤ a′0
and q0 � q′0 (Property 1). We now show how to construct an infinite sequence
q′0a
′
1q
′
1a
′
2q
′
2 · · · that satisfies the following (Property 2): 〈q′n, a′n+1, q

′
n+1〉 ∈ h,

an+1 ≤ a′n+1, and qn � q′n for all n ≥ 0. We do this by proving that every finite
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sequence q′0a
′
1q
′
1 . . . q

′
k−1a

′
kq
′
k satisfying Property 2 can be extended by one step

to length k + 1 while preserving Property 2. Moreover, such a sequence can be
started (case k = 0) since for k = 0, Property 1 implies Property 2 as q′1 is not in
the sequence then. For the extension, we distinguish two (non-exclusive) cases:

1. f ∈ GmA . Since 〈qk, ak+1, qk+1〉 ∈ f and qk � q′k (by Property 2), Lemma 5
implies that there exists an arc 〈q′k, a, q〉 ∈ f such that ak+1 ≤ a and qk+1 �
q. Since f v∀∃ h, there must be some arc 〈q′k, a′k+1, q

′
k+1〉 ∈ h such that

ak+1 ≤ a ≤ a′k+1 and qk+1 � q � q′k+1.
2. h ∈ GmA . Since 〈qk, ak+1, qk+1〉 ∈ f and f v∀∃ h, there is some arc 〈qk, a, q〉 ∈
h s.t. ak+1 ≤ a and qk+1 � q. Since qk � q′k (by Property 2) and 〈qk, a, q〉 ∈ h,
Lemma 5 implies that there is an arc 〈q′k, a′k+1q

′
k+1〉 ∈ h such that ak+1 ≤

a ≤ a′k+1 and qk+1 � q � q′k+1.

To conclude, there exist an arc 〈p, a′0, q′0〉 ∈ g and an infinite sequence of arcs
〈q′0, a′1, q′1〉, 〈q′1, a′2, q′2〉, . . . in h such that p ∈ I and a′i ∈ {0, 1} for all i and
a′j = 1 for infinitely many j. Hence, LFT (g , h) holds. ut

Finally, we show that the set GmA is closed under composition.

Lemma 8. GmA is closed under composition. That is, ∀e, f ∈ GmA : e; f ∈ GmA .

Proof. As e, f ∈ GmA , there are g, h ∈ GfA with e 6∗ g and f 6∗ h. We will show
that e; f 6∗ g;h. Since by Lemma 2, g;h ∈ GfA, this will give e; f ∈ GmA . By the
definition of 6∗, there are g0, h0, g1, h1, . . . , gn, hn ∈ GmA s.t. g0 = g, h0 = h, gn =
e, hn = f and for each i : 1 ≤ i ≤ n, gi 6 gi−1 and hi 6 hi−1. We will show that
for any i : 1 ≤ i ≤ n, gi;hi 6∗ gi−1;hi−1 which implies that e; f 6∗ g;h.

Since gi 6 gi−1, for every arc 〈p, a, q〉 ∈ gi, 〈p, a′, q〉 ∈ gi−1 with a ≤ a′. Since
hi 6 hi−1, for every arc 〈q, b, r〉 ∈ hi, 〈q, b′, r〉 ∈ hi−1 with b ≤ b′. Therefore,
by the definition of composition, for each 〈p, c, r〉 ∈ gi;hi, we have 〈p, c′, r〉 ∈
gi−1;hi−1 with c ≤ c′. To prove that gi;hi 6∗ gi−1;hi−1, it remains to show that
there is also 〈p, c̄, r̄〉 ∈ gi;hi ∩ gi−1;hi−1 with c′ ≤ c̄ and r � r̄. The case when
c = c′ is trivial. If c < c′, then 0 ≤ c′ and thus there are 〈p, a, q〉 ∈ gi−1 and
〈q, b, r〉 ∈ hi−1 s.t. c′ = max({a, b}). Since gi 6 gi−1, there is 〈p, ā, q̄〉 ∈ gi ∩ gi−1

with a ≤ ā and q � q̄. By Lemma 5 and as hi ∈ GmA , there is also 〈q̄, b′, r′〉 ∈ hi
with b ≤ b′ and r � r′. Since hi 6 hi−1, there is 〈q̄, b̄, r̄〉 ∈ hi ∩ hi−1 where
b′ ≤ b̄ and r′ � r̄. Together with 〈p, ā, q̄〉 ∈ gi ∩ gi−1, this implies that there
is 〈p, c̄, r̄〉 ∈ gi;hi ∩ gi−1;hi−1 with max({ā, b̄}) ≤ c̄ and r′ � r̄. Since c′ =
max({a, b}) ≤ max({ā, b̄}) ≤ c̄ and r � r′ � r̄, 〈p, c̄, r̄〉 is the wanted arc. ut

The Algorithm. Algorithm 2 describes our approach in pseudo-code. In this
algorithm, Lines 4, 5, 14, and 15 implement Optimization 1; Lines 1 and 13 im-
plement Optimization 2. Overall, the algorithm works such that for each graph
in GfA, a minimization of some v∀∃-smaller graph is generated and used in the
lasso-finding tests (and only minimizations of graphs v∀∃-smaller than those in
GfA are generated and used). The correctness of the algorithm is stated in Theo-
rem 1, which is proved in Appendix C using the closure of GmA under composition
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Algorithm 2: Simulation-optimized Ramsey-based Universality Checking
Input: A BA A = (Σ,Q, I, F, δ), the set of all single-character graphs G1

A.
Output: TRUE if A is universal. Otherwise, FALSE.
Next := {Min(g) | g ∈ G1

A}; Init := ∅;1

while Next 6= ∅ do2

Pick and remove a graph g from Next ;3

if ∃f ∈ Init : f v∀∃ g then Discard g and continue;4

Remove all graphs f from Init s.t. g v∀∃ f ;5

Add g into Init ;6

Next := Init ; Processed := ∅;7

while Next 6= ∅ do8

Pick a graph g from Next ;9

if ∃h ∈ Processed : ¬LFT (h, g) ∨ ¬LFT (g , h) ∨ ¬LFT (g , g) then10

return FALSE ;
Remove g from Next and add it to Processed ;11

foreach h ∈ Init do12

f = Min(g;h);13

if ∃k ∈ Processed ∪Next : k v∀∃ f then Discard f and continue;14

Remove all graphs k from Processed ∪Next s.t. f v∀∃ k;15

Add f into Next ;16

return TRUE ;17

stated in Lemma 8, the monotonicity from Lemma 6, and the preservation of
lasso-finding tests from Lemma 7.

Theorem 1. Alg. 2 eventually terminates. It returns TRUE iff A is universal.

5 Language Inclusion of BA

Let A = (Σ,QA, IA, FA, δA) and B = (Σ,QB, IB, FB, δB) be two BA. Let �A
and �B be the maximal simulations on A and B, respectively. We first introduce
some further notations from [8] before explaining how to extend our approach
from universality to language inclusion checking. Define the set EA = QA×QA.
Each element in EA is an edge 〈p, q〉 asserting that there is a path from p to q
in A. Define the language of an edge 〈p, q〉 as L(p, q) = {w ∈ Σ+ | p w=⇒ q}.

Define SA,B = EA × GB. We call g = 〈g, g〉 a supergraph in SA,B. For any
supergraph g ∈ SA,B, its language L(g) is defined as L(g)∩L(g). Let Zgh be the
ω-regular language L(g) ·L(h)ω. We say Zgh is proper if g = 〈p, q〉 and h = 〈q, q〉
where p ∈ IA and q ∈ FA. Notice that, by the definition of properness, every
proper Zgh is contained in L(A). The following is a relaxed version of Lemma 4
in [8] (the constraints of being a proper Zgh are weaker than those in [8]).

Lemma 9. (1) L(A) =
⋃
{Zgh | Zgh is proper}. (2) For all non-empty proper

Zgh, either Zgh ∩ L(B) = ∅ or Zgh ⊆ L(B). (3) L(A) ∩ L(B) =
⋃
{Zgh |

Zgh is proper and Zgh ∩ L(B) = ∅}.

8



The above lemma implies that L(A) ⊆ L(B) iff ∀g,h ∈ SA,B either Zgh is
not proper or Zgh ⊆ L(B). Since L(g) = ∅ or L(h) = ∅ implies Zgh ⊆ L(B), for
language inclusion checking it is sufficient to build and check only supergraphs
with nonempty languages.

Supergraphs in SfA,B = {g ∈ SA,B | L(g) 6= ∅} can be built as follows. First,
supergraphs g = 〈〈pg, qg〉, g〉 and h = 〈〈ph, qh〉, h〉 in SA,B are composable iff
qg = ph, and their composition g; h = 〈〈pg, qh〉, g;h〉. For all a ∈ Σ, define
the set of single-character supergraphs Sa = {〈〈p, q〉, ga〉 | q ∈ δA(p, a)}. Let
S1
A,B :=

⋃
a∈Σ S

a. As in universality checking, one can obtain SfA,B by repeatedly
composing composable supergraphs in S1

A,B until a fixpoint is reached.
A method to check whether a pair of supergraphs 〈g,h〉 is a counterexample

to L(A) ⊆ L(B), i.e., a test whether Zgh is both proper and disjoint from L(B),
was proposed in [8]. A pair of supergraphs 〈g = 〈g, g〉,h = 〈h, h〉〉 passes the
double-graph test (denoted DGT (g,h)) iff Zgh is not proper or LFT (g , h).

Lemma 10. L(A) ⊆ L(B) iff DGT (g,h) for all g,h ∈ SfA,B.

Analogously to the universality checking algorithm in Section 3, a language
inclusion checking algorithm can be obtained by combining the above princi-
ples for generating supergraphs in SfA,B and using the double-graph test (cf.
Appendix D).

6 Improving Language Inclusion Testing via Simulation

Here we describe our approach of utilizing simulation-based subsumption tech-
niques to improve the Ramsey-based language inclusion test.

In order to be able to use simulation-based subsumption as in Section 4, we
lift the subsumption relation v∀∃ to supergraphs as follows: Let g = 〈〈pg, qg〉, g〉
and h = 〈〈ph, qh〉, h〉 be two supergraphs in SA,B. Let g v∀∃S h iff pg = ph,
qg �A qh and g v∀∃ h. Define '∀∃S as v∀∃S ∩ (v∀∃S )−1.

Since we want to work with supergraphs that are minimal w.r.t. v∀∃S , we need
to change the definition of properness and the respective double-graph test. We
say that Zgh is weakly proper iff g = 〈p, q〉 and h = 〈q1, q2〉, where p ∈ IA,
q2 ∈ FA, q �A q1 and q2 �A q1.

Definition 3. Supergraphs g,h ∈ SA,B pass the relaxed double-graph test, writ-
ten RDGT (g,h), iff either (1) Zgh is not weakly proper, or (2) LFT (g , h).

Notice that, every weakly proper Zgh is still contained in L(A), allowing us to
prove the following theorem.

Theorem 2. L(A) ⊆ L(B) iff RDGT (g,h) for all g,h ∈ SfA,B.

Furthermore, we lift the notions of 6∗ and Min from Section 4 from graphs to
supergraphs. For any two supergraphs g = 〈g, g〉,h = 〈h, h〉 from SA,B we write
g 6∗S h iff g = h and g 6∗ h. Then SmA,B = {g ∈ SA,B | ∃h ∈ SfA,B : g 6∗S h}.
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Algorithm 3: Optimized Ramsey-based Language Inclusion Checking
Input: BA A = (Σ,QA, IA, FA, δA), B = (Σ,QB, IB, FB, δB), and the set S1

A,B.
Output: TRUE if L(A) ⊆ L(B). Otherwise, FALSE.
Next := {MinS(g) | g ∈ S1

A,B}; Init := ∅;1

while Next 6= ∅ do2

Pick and remove a supergraph g from Next ;3

if ∃f ∈ Init : f v∀∃S g then Discard g and continue;4

Remove all supergraphs f from Init s.t. g v∀∃S f ;5

Add g into Init ;6

Next := Init ; Processed := ∅;7

while Next 6= ∅ do8

Pick a supergraph g from Next ;9

if ∃h ∈ Processed : ¬RDGT (h,g) ∨ ¬RDGT (g,h) ∨ ¬RDGT (g,g) then10

return FALSE ;
Remove g from Next and add it to Processed ;11

foreach h ∈ Init where 〈g,h〉 are composable do12

f := MinS(g; h);13

if ∃k ∈ Processed ∪Next : k v∀∃S f then Discard f and continue;14

Remove all supergraphs k from Processed ∪Next s.t. f v∀∃S k;15

Add f into Next ;16

return TRUE ;17

MinS(g) again computes a graph that is 6∗S smaller than g. It is a possibly
non-deterministic operation such that MinS(g, g) = 〈g,Min(g)〉.

Like in Section 4, it is now possible to prove a closure of SmA,B under com-
position and a preservation of the double-graph test on v∀∃S -larger supergraphs
(cf. Appendix E). What slightly differs is the monotonicity of the composition,
caused by the additional composability requirement. To cope with it, we define
a new relation E∀∃, weakening v∀∃S : For g = 〈〈p, q〉, g〉,h = 〈〈p′, q′〉, h〉 ∈ SA,B,
g E∀∃ h iff p′ � p, q′ � q, and g v∀∃ h. Notice that v∀∃S implies E∀∃. From the
definitions of v∀∃S , E∀∃, and Lemma 6, we then easily get the following relaxed
monotonicity lemma.

Lemma 11. For any e, f ,g ∈ SA,B and h ∈ SmA,B with e v∀∃S g, and f E∀∃ h
where e, f and g,h are composable, e; f v∀∃S g; h.

Now, to be able to say that it is safe to work with v∀∃S -smaller supergraphs
in the incremental supergraph construction, it remains to show that given su-
pergraphs e, g, h s.t. e v∀∃S g and g, h are composable, one can always find an
f satisfying the preconditions of Lemma 11—excluding a situation of only the
bigger supergraphs g, h being composable. Fortunately, it is possible to show
that the needed supergraph f always exists in SmA,B. Moreover, since only 1-letter
supergraphs are used on the right of the composition, all supergraphs needed
as right operands in the compositional construction can always be found in the
minimization of S1

A,B, which can easily be generated.
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Fig. 1. Timeout Cases of Universality Checking on Tabakov and Vardi’s random model.
The vertical axis is the percentage of tasks that cannot be finished within the timeout
period and the horizontal axis is the acceptance density (ad).

Algorithm 3 is our simulation-optimized algorithm for BA inclusion-checking.
Its correctness is stated below and proved in Appendix E.

Theorem 3. Alg. 3 eventually terminates. It returns TRUE iff L(A) ⊆ L(B).

7 Experimental Results

We have implemented both our simulation subsumption algorithms and the origi-
nal ones of Fogarty and Vardi [8, 9] in Java. For universality testing, we compared
our algorithm to the one in [9].1 For language inclusion testing, we compared
our simulation subsumption algorithm to a restricted version that uses only the
simple subsumption relation of [9]. (The language inclusion checking algorithm
described in [8] does not use any subsumption at all and performed much worse.)
We refer interested readers to [20] for all relevant materials needed to reproduce
the results. A description of the machines that we used is given in Appendix F.

Universality Testing: We have two sets of experiments. In Experiment 1,
we use Tabakov and Vardi’s random model. This model fixes the alphabet size
to 2 and uses two parameters: transition density (avg. number of outgoing tran-
sitions per alphabet symbol) and acceptance density (percentage of accepting
states). We use this approach with td = 0.5, 1, . . . , 4 and ad = 0.1, 0.2, . . . , 1.0
to generate 100 random BA with 100 states for each combination of td and ad.
We set a timeout period of 3500 sec. In Figure 1, we compare how many time-
outs appear when using the two considered approaches. We only list cases with
td = 1.5, 2.0, 2.5, 3.0, since in the other cases both methods can complete most of
the tasks within the timeout period. The average time for both methods is given
in Figure 4 in Appendix F. Our approach has a better performance in almost
all configurations, and the difference gets larger as td and ad increase.

Experiment 2 uses BA from random LTL formulae. We generate only valid
formulae (in the form f ∨ ¬f), thus ensuring that the corresponding BA are
1 The algorithm in [9] uses the subsumption relation v, but a different search strategy

than our algorithm. So we also compared two versions of our algorithm with either
simulation subsumption v∀∃ or just the simple subsumption v of [9]. While our
search strategy with simple subsumption v is already about 20% faster than [9] on
average, the main improvement is achieved by using the simulation subsumpt. v∀∃ .
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Fig. 2. Universality checking on automata generated from random LTL. Each point in
the figure is the average result of 100 different instances. The horizontal axis is the size
of the alphabet. The vertical axis is the average execution time in seconds.

universal. We only focus on valid formulae since most BA generated from random
LTL formulae can be recognized as non-universal in almost no time. Thus, the
results would have been not interesting. We generate LTL formulae with lengths
12, 18, 24, and 30 and 1–4 propositions (which corresponds to automata with
alphabet sizes 2, 4, 8, and 16). For each configuration, we generate 100 BA2. The
results are shown in Figure 2. The difference between the two approaches is quite
large in this set of experiments. With formulae of length 30 and 4 propositions,
our approach is 20 times faster than the original subsumption based approach.

Language Inclusion Testing: We again have two sets of experiments. In
Experiment 1, we inject (artificial) errors into models of several mutual exclu-
sion algorithms from [14]3, translate both the original and the modified version
into BA, and test whether the control flow (w.r.t. the occupation of the critical
section) of the two versions is the same. In these models, a state p is accepting
iff the critical section is occupied by some process in p. The results are shown in
Table 1. The results of a slightly different version, where all states are accepting
is given in Table 3 in Appendix F. Our approach significantly and consistently
has a better performance than the basic subsumption approach in both versions.

In Experiment 2, we translate two randomly generated LTL formulae to BA
A, B and then check whether L(A) ⊆ L(B). We use formulae of length 10, 15,
and 20 with 1–3 propositions (which corresponds to BA of alphabet sizes 2, 4,
and 8). For each length of formula and number of propositions, we generate 10
pairs of BA. The relative results are shown in Figure 3. The difference here is
significant. For the largest cases (with formula length 20 and 3 propositions),
our approach is 1914 times faster than the basic subsumption approach.

8 Conclusions and Extensions

We have introduced simulation-based subsumption techniques for Ramsey-based
universality/language-inclusion checking for nondeterministic BA. We evalu-

2 We do not have formulae having length 12 and 4 propositions because our genera-
tor [18] requires that (length of formula/3) > number of propositions.

3 The models in [14] are based on guarded commands. We modify the models by
randomly weakening or strengthening the guard of some commands.
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Original Error Subsumption Simulation Sub.

Tr. St. Tr. St. L(E)⊆L(O) L(O)⊆L(E) L(E)⊆L(O) L(O)⊆L(E)

Bakery 2697 1506 2085 1146 >1day >1day 57m55s(F) >1day

Peterson 34 20 33 20 2.7s(T) 1.4s(F) 0.9s(T) 0.2s(F)

Dining phil. (Ver.1) 212 80 464 161 >1day >1day 52s(F) >1day

Dining phil. (Ver.2) 212 80 482 161 >1day >1day 4m50s(F) >1day

Fisher 1395 634 3850 1532 >1day >1day >1day >1day

MCS queue lock 21503 7963 3222 1408 oom 2m35s(F) 33m38s(T) 1m11s(F)

Table 1. Language inclusion checking on mutual exclusion algorithms. The columns
“Original” and “Error” refer to original, resp., erroneous, model. We test inclusion
for both directions. “>1day” = the task cannot be finished within one day. “oom” =
required memory > 8GB. If a task completes successfully, we record the run time and
whether language inclusion holds “T” or not “F”.
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Fig. 3. Language inclusion checking on automata generated from random LTL. Each
point in the figure is the average result of 10 different instances. The horizontal axis is
the size of the alphabet. The vertical axis is the average execution time in seconds.

ated our approach by a wide set of experiments, showing that the simulation-
subsumption approach consistently outperforms the basic subsumption of [9].

Our techniques can be extended in several ways. Weaker simulations for BA
have been defined in the literature, e.g., delayed/fair simulation [6], or their mul-
tipebble extensions [5]. One possibility is to quotient the BA w.r.t. (multipebble)
delayed simulation, which (unlike quotienting w.r.t. fair simulation) preserves
the language. Furthermore, in our language inclusion checking algorithm, the
subsumption w.r.t. direct simulation �A on A can be replaced by the weaker
delayed simulation (but not by fair simulation). Moreover, in the definition of
weakly proper in Sect. 6, in the condition q �A q1, the �A can be replaced by
any other relation that implies ω-language containment, e.g., fair simulation. On
the other hand, delayed/fair simulation cannot be used for subsumption in the
automaton B in inclusion checking (nor in universality checking), since Lemma 6
does not carry over.

Next, our language-inclusion algorithm does not currently exploit any sim-
ulation preorders between A and B. Of course, direct/delayed/fair simulation
between the respective initial states of A and B is sufficient (but not necessary)
for language inclusion. However, it is more challenging to exploit simulation
preorders between internal states of A and internal states of B.
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Finally, it is easy to see that the proposed simulation subsumption technique
can be built over backward simulation preorder too. It would, however, be inter-
esting to evaluate such an approach experimentally. Further, one could then also
try to extend the framework to use some form of mediated preorders combining
forward and backward simulation preorders like in the approach of [2].
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A Proof of Lemma 1 from Section 2

Define the function H(A) = {{x, y} | x, y ∈ A∧x 6= y}, where A is an countably
infinite set. The following is a suitable version of the infinite Ramsey theorem.

Lemma 12. Let A be an countably infinite set, and let B = H(A). For any
partitioning of B into finitely many classes B1, . . . , Bm, there exists an infinite
subset A′ of A s.t. H(A′) ⊆ Bk, for some k.

Proof (Lemma 1). We first show Point 1, i.e., Σω =
⋃
{Ygh | g, h ∈ GA}. Let

w = a0a1 . . . be any ω-word. We have to show that there exist graphs g, h ∈ GA
s.t. w ∈ Ygh.

Consider prefixes wi = a0 . . . ai of w. Each wi belongs to the language of
some graph in GA, and, being the number of such graphs finite, there exists a
graph g ∈ GA s.t. wi ∈ L(g) for infinitely many i’s. Let A = L(g).

For any wi, wj ∈ L(g), i ≤ j, let wj 	 wi = ai+1 . . . aj (and define wj 	 wi
as wi 	wj if i > j). Let B = H(A) be the set of unordered pairs of strings from
L(g). Consider the partitioning of B =

⋃
h∈GA Bh into finitely many classes,

where each class Bh is defined as: {wi, wj} ∈ Bh iff wj 	 wi ∈ L(h).
By the infinite-Ramsey theorem, there exists a graph h in GA and an infinite

subset A′ of L(g) s.t. H(A′) ⊆ Bh, i.e., for every wi, wj in A′, wj 	 wi belongs
to L(h). Thus, it is possible to split the word w as follows:

w = a0 . . . ai0−1 ai0 . . . ai1−1 ai1 . . . ai2−1 ai2 . . .

where a0 . . . ai0−1 ∈ L(g), and aik . . . aik+1−1 ∈ L(h) for k ≥ 0. (Here, i0 is the
least index i s.t. wi ∈ A′, and, inductively, ik+1 is the least index i > ik s.t.
wi ∈ A′.) Hence, w ∈ Ygh.

We now show Point 2, i.e., ∀g, h ∈ GA with L(g),L(h) 6= ∅, either Ygh ∩
L(A) = ∅ or Ygh ⊆ L(A). We prove that if a word w ∈ Ygh is in L(A), then
every word w′ ∈ Ygh is in L(A) as well.

The crucial observation is that, from the definition of L(g), all words in L(g)
share the same reachability properties in A. More precisely, w ∈ L(g) implies
that, for any pair of states p, q ∈ Q, w ∈ L(p, a, q) with 〈p, a, q〉 ∈ g. This implies
that, for any two w,w′ ∈ L(g), and for any two p, q ∈ Q, 1) w induces a path

between p and q iff w′ does so, i.e., p w=⇒ q iff p
w′=⇒ q, and 2) w induces an

accepting path between p and q iff w′ does so, i.e., p w=⇒
F

q iff p
w′=⇒
F

q.

Thus, assume that w ∈ Ygh is in L(A) and let w′ be any other word in Ygh.
We have to show w′ ∈ L(A). Let π = q0q1 . . . be an accepting run of A over
w, thus witnessing w being accepted. We can decompose w in w = w0w1w2 . . . ,
with w0 ∈ L(g) and wi ∈ L(h), for all i > 0. Moreover, the above decomposition
of w induces a decomposition of π in qi0 . . . qi1 . . . qi2 . . . (where i0 = 0) s.t.
qik

wk=⇒ qik+1 for any k ≥ 0, and qik
wk=⇒
F

qik+1 for infinitely many k > 0.

We now decompose w′ = w′0w
′
1w
′
2 . . . as we did with w above, i.e., w′0 ∈ L(g)

and w′i ∈ L(h), for i > 0, and we show how to build an accepting run π′ = q′0q
′
1 . . .
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over w′. We take q′0 := q0. By w′0 ∈ L(g) and the crucial observation 1) above,

q0
w′0=⇒ qi1 , hence we make the two runs π and π′ synchronize at i1, i.e., q′i1 := qi1 .

Similarly, for any k > 0, by w′k ∈ L(h) and the crucial observation 1), then

qik
w′k=⇒ qik+1 , thus q′ik+1

:= qik+1 , for k > 0. Hence, the two paths π and π′

synchronize at indices ik, for k ≥ 0. Moreover, if qik
wk=⇒
F

qik+1 for infinitely

many positive k’s, then, by the crucial observation 2), q′ik
w′k=⇒
F

q′ik+1
for infinitely

many positive k’s as well. Hence, if π is an accepting run, then π′ is an accepting
run. Thus, w′ ∈ L(A).

Finally, Point 3 follows directly from Points 1 and 2.
ut

B Proofs of Lemmas from Section 3

The following auxiliary lemma has been proved in [7].

Lemma 13. (Lemma 3.1.1 in [7]) ∀g, h ∈ GA : L(g) · L(h) ⊆ L(g;h).

We now prove Lemma 2, which states the relationship between graphs in GfA
and G1

A.

Proof (Lemma 2). Since the languages of the graphs in GA form a partition of
Σ+, we have that w ∈ L(g) and w ∈ L(h) iff L(g) = L(h) iff g = h. Let h be
a graph with a non-empty language and let w = a1a2a3 . . . an be a word in L(h).
The word w is also in the language of the graph ga1 ; ga2 ; . . . ; gan

. Therefore,
h = ga1 ; ga2 ; . . . ; gan

. Conversely, assume h = ga1 ; ga2 ; . . . ; gan
with ai ∈ Σ for

1 ≤ i ≤ n. By Lemma 13, the word a1a2a3 . . . an is in L(h). Therefore, h ∈ GfA.
ut

Before proving Lemma 3, we first prove the lemma below.

Lemma 14. For g, h ∈ GfA, LFT (g , h) iff Ygh ∩ L(A) 6= ∅.

Proof. For the “if” direction, assume that Ygh ∩ L(A) 6= ∅. Let uvω be a word
in Ygh ∩ L(A) s.t. u ∈ L(g) and v ∈ L(h). Since uvω ∈ L(A), we have that
there exists an infinite sequence of states p, q0, q1, . . . in Q s.t. (1) p u=⇒ q0,
p ∈ I and (2) qi

v=⇒ qi+1 for all i ∈ N and qj
v=⇒
F

qj+1 for infinitely many

j ∈ N. From (1) and u ∈ L(g), there exists an arc 〈p, a0, q0〉 in g for a0 ∈
{0, 1}, p ∈ I. From (2) and v ∈ L(h), there exists an infinite sequence of arcs
〈q0, a1, q1〉, 〈q1, a2, q2〉 . . . 〈qk−1, ak, qk〉 . . . in h where ai ∈ {0, 1} for all i ∈ N,
and aj = 1 for infinitely many j ∈ N. Therefore, we have LFT (g , h).

For the “only if” direction, assume that LFT (g , h). There exists an infinite
sequence of states p, q0, q1, . . . in Q s.t. (1) the arc 〈p, a0, q0〉 in g for a0 ∈ {0, 1},
p ∈ I and (2) the arcs 〈q0, a1, q1〉, 〈q1, a2, q2〉 . . . 〈qk−1, ak, qk〉 . . . in h where ai ∈
{0, 1} for all i ∈ N, and aj = 1 for infinitely many j ∈ N. Let uvω be any word in
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Ygh s.t. u ∈ L(g) and v ∈ L(h)—such a word must exist as g, h ∈ GfA. From (1)
and (2), we have p u=⇒ q0 for p ∈ I, qi

v=⇒ qi+1 for all i ∈ N and qj
v=⇒
F

qj+1 for

infinitely many j ∈ N. Hence, uvω ∈ L(A), and thus we have Ygh∩L(A) 6= ∅. ut

Now, we can prove Lemma 3.

Proof (Lemma 3). We have to show that A is universal iff for every pair of
graphs g, h in GfA, LFT (g , h) holds. For the “if” direction, assume that A is
not universal. Hence, by Point 3 of Lemma 1, there must be some g, h ∈ GfA
s.t. Ygh ∩ L(A) = ∅. By Lemma 14, ¬LFT (g , h). For the “only if” direction,
assume A is universal. By Point 3 in Lemma 1, ∀g, h ∈ GfA : Ygh ∩ L(A) 6= ∅.
By Lemma 14, we have LFT (g , h) for all possible g, h ∈ GfA. ut

C Correctness of Algorithm 2

Lemma 15. For any g ∈ G1
A, there is some f ∈ Init on Line 7 of Algorithm 2

such that f v∀∃ g.

Proof. First note that due to Lemma 4, Min(g) v∀∃ g for each g ∈ G1
A. The

graph Min(g) is put into Next on Line 1. Then, Min(g) either

– stays in Next ,
– is moved to Init due to Lines 3 and 6,
– is discarded due to Lines 3 and 4 which can, however, happen only if there

is already some v∀∃-smaller graph in Init (which can then only be replaced
by even v∀∃-smaller graphs on Lines 5 and 6),

– or is removed from Init on Line 5 when some v∀∃-smaller graph is put into
Init on Line 6 (which can then in turn be replaced by even v∀∃-smaller
graphs on Lines 5 and 6).

Since the loop terminates only when Next = ∅, the lemma clearly holds. ut

Lemma 16. Once any graph f appears in the set Next in between of Lines 8–16
of Algorithm 2, then from this point in the run of the algorithm onwards there
is always some f ′ ∈ Next ∪ Processed such that f ′ v∀∃ f .

Proof. The lemma holds since f can only stay in Next , be moved to Processed
on Line 11, or be removed from Next or Processed on Line 15 in which case,
however, a v∀∃-smaller graph is put into Next on Line 16 (which can in turn be
replaced by further v∀∃-smaller graphs on Lines 15 and 16). ut

Lemma 17. All graphs tested on the lasso-finding test within a run of Algo-
rithm 2 are in GmA .

Proof. All graphs that participate in the lasso-finding test on Line 10 are either
(1) equal to Min(g) for some g ∈ G1

A, or (2) they are generated on Line 13.
Minimizations of graphs from G1

A are clearly in GmA . In Case (2), the newly
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generated graphs are minimizations of compositions of graphs from Init and
graphs from Next . Provided that Next ⊆ GmA , any graph generated on Line 13 is
again in GmA by Lemma 8 and because GmA is clearly closed under Min. Since the
initial value of Next is a subset of GmA (minimizations of graphs from G1

A) and
since after initialization, only graphs generated on Line 13 can be added into
Next , Next will always stay a subset of GmA . Therefore, all graphs f generated
on Line 13 and used in the lasso-finding test on Line 10 are always in GmA . ut

Let Processedend denote the contents of the set Processed when Algorithm 2
terminates.

Lemma 18. If Algorithm 2 returns TRUE, then for every g ∈ GfA, there exists
some h ∈ Processedend such that h v∀∃ g.

Proof. By Lemma 2, the graph g is a finite composition g0; g1; . . . ; gn of n + 1
graphs from G1

A. We now prove by induction that for each 0 ≤ i ≤ n, there
exists a graph hi ∈ Processedend such that hi v∀∃ g0; g1; . . . ; gi.

We start with the base case. Due to Lemma 15 and the code on Line 7, there
is some f0 ∈ Next such that f0 v∀∃ g0 when the second loop is entered for the
first time. Using Lemma 16 and the fact that Next is empty when Algorithm 2
returns TRUE, the base case is proved.

For the inductive step, we assume that there exists a graph hk ∈ Processedend

such that hk v∀∃ g0; g1; . . . ; gk. Due to Lemma 15, we know that there is
fk+1 ∈ Init such that fk+1 v∀∃ gk+1. By Lemmas 6 and 4, Min(hk; fk+1) v∀∃
g0; g1; . . . ; gk; gk+1. The graph Min(hk; fk+1) is added into Next on Line 16 right
after hk is moved to Processed on Line 11 (unless there is already some v∀∃-
smaller graph in Processed ∪Next). From Lemma 16 and from the fact that Next
is empty when Algorithm 2 returns TRUE, it is then clear that there is some
graph hk+1 ∈ Processedend such that hk+1 v∀∃ g0; g1; . . . ; gk+1. ut

Lemma 19. Algorithm 2 eventually terminates.

Proof. The set G1
A is finite, and hence the set Next constructed on Line 1 is finite

too. Each iteration of the loop in Lines 2–6 removes one graph from Next , and
hence the loop must terminate. Moreover, each of the finitely many iterations
of the first loop adds at most one graph to Init , and hence the set Next = Init
constructed on Line 7 is finite (if Line 7 is reached at all). Now, for the loop on
Lines 8–16 not to terminate, it would have to be the case that some graph is
repeatedly removed from Next on Line 11. Hence, this graph would have to be
repeatedly added into Next too. However, due to Lemma 16, once some graph g
appears in Next on Line 11, there will always be some graph h ∈ Processed∪Next
such that h v∀∃ g. Hence, due to the test on Line 14, g cannot be added to Next
for the second time. ut

Now we are finally able to prove Theorem 1.

Proof (Theorem 1). By Lemma 19, Algorithm 2 eventually terminates and re-
turns a value.
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First, we prove by contradiction that if TRUE is returned, A is universal.
Assume that A is not universal. Then, by Lemma 3, (1) there is either some pair
of graphs g 6= h ∈ GfA such that ¬LFT (g , h), or (2) there is a graph f ∈ GfA
such that ¬LFT (f , f ).

Let us start with Case (1). By Lemma 18, we have that there exist some
g′, h′ ∈ Processedend such that g′ v∀∃ g and h′ v∀∃ h. Assume that g′ is
added to Processed after h′ (the other case being symmetrical due to the “or”
used in the condition on Line 10). When g′ is about to be added to Processed ,
the algorithm performs a lasso-finding test on 〈g′, h′〉 on Line 10. Since 〈g, h〉
fails the lasso-finding test, g′ v∀∃ g, and h′ v∀∃ h, we know by Lemma 7
that also ¬LFT (g ′, h ′), and thus the algorithm returns FALSE, which leads to
a contradiction.

In Case (2), by Lemma 18, we have that there exists some f ′ ∈ Processedend

such that f ′ v∀∃ f . A lasso-finding test on 〈f ′, f ′〉 is performed on Line 10, right
before moving f ′ to Processed , which happens on Line 11. Since ¬LFT (f , f ),
f ′ v∀∃ f , we know by Lemma 7 that also ¬LFT (f ′, f ′), and thus the algorithm
returns FALSE, which again leads to a contradiction.

On the other hand, if A is universal, due to Lemma 3, each pair of graphs
〈g, h〉 for g, h ∈ GfA passes the lasso-finding test. At the same time, Lemma 17
guarantees that for every pair of graphs g′, h′ ∈ GA that are subject to the
lasso-finding test in the run of Algorithm 2, g′, h′ ∈ GmA . Therefore, there are
some g, h ∈ GfA such that g′ 6∗ g and h′ 6∗ h which by Lemma 4 gives g′ '∀∃ g
and h′ '∀∃ h, and hence, g v∀∃ g′ and h v∀∃ h′. Since h ∈ GfA ⊆ GmA , Lemma 7
implies that LFT (g ′, h ′). Therefore, the algorithm can only return TRUE in this
case. ut

D Basic Ramsey-based Language Inclusion Checking

Below, we provide proofs of Lemmas 9 and 10.

Proof (Lemma 9). For Point 1, we have to prove L(A) =
⋃
{Zgh | Zgh is proper}.

For the left-to-right inclusion, we proceed as follows. Let w be a word in L(A). We
show that there exist supergraphs g,h ∈ SA,B s.t. w ∈ Zgh and Zgh is proper.
From w ∈ L(A), there must be a run p . . . q . . . q . . . in A over w s.t. p ∈ IA,
q ∈ FA, and q occurs infinitely often. Hence, we have that w ∈ L(p, q)L(q, q)ω.
By Point 1 of Lemma 1, there must be a pair of graphs g, h ∈ GB s.t. w ∈
L(g)L(h)ω. Hence, the argument can be proved by letting g = 〈〈p, q〉, g〉 and
h = 〈〈q, q〉, h〉. We now prove the right-to-left inclusion. For any two supergraphs
g = 〈〈p, q〉, g〉,h = 〈〈q, q〉, h〉 ∈ SA,B s.t. Zgh is proper, let w be a word in Zgh.
We show that w ∈ L(A). From the definition of the language of supergraphs
and w ∈ Zgh, we have that w ∈ L(p, q)L(q, q)ω. Moreover, by the definition of
properness, we have p ∈ IA, q ∈ FA. Hence, there must be an accepting run
p . . . q . . . q . . . in A over w, and hence, w ∈ L(A).

For Point 2, we have to show for all non-empty proper Zgh that either Zgh ∩
L(B) = ∅ or Zgh ⊆ L(B) holds. Let g = 〈〈p, q〉, g〉,h = 〈〈q, q〉, h〉 ∈ SA,B be
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two supergraphs s.t. Zgh is non-empty and proper. From the definition of the
languages of supergraphs, we have Zgh ⊆ Ygh. From Point 2 of Lemma 1, either
Ygh ∩L(B) = ∅ or Ygh ⊆ L(B). Therefore, either Zgh ∩L(B) = ∅ or Zgh ⊆ L(B).

Point 3 follows directly from Point 1 and Point 2. ut

Proof (Lemma 10). We have to show that L(A) ⊆ L(B) iff DGT (g,h) for all
g,h ∈ SfA,B. For the “if” direction, assume L(A) 6⊆ L(B). Hence, by Point 3 of
Lemma 9, there must be some g and h s.t. Zgh is proper and Zgh ∩ L(B) = ∅.
By the definition of the double-graph test and Lemma 14, we have ¬DGT (g,h).
For the “only if” direction, assume L(A) ⊆ L(B). By Point 3 of Lemma 9, there
are no g and h s.t. Zgh is proper, Zgh ∩ L(B) = ∅, and Zgh 6= ∅. Therefore, by
the definition of the double-graph test and Lemma 14, DGT (g,h) holds for all
possible g,h ∈ GfA. ut

The next lemma is an analogy of Lemma 2, allowing the incremental con-
struction of the set SfA,B.

Lemma 20. A supergraph g is in SfA,B iff ∃g1, . . . ,gn ∈ S1
A,B : g = g1; . . . ; gn.

Proof. The lemma is a direct consequence of Lemmas 3.4.1 and 3.4.3 stated in [7]
(using a slightly different notation). ut

A basic language inclusion test algorithm (see Algorithm 4) can be obtained
by combining Lemmas 9, 10, and 20.

Algorithm 4: Ramsey-based Language Inclusion Checking (A Modified
Version of The Approach in [8])

Input: A = (Σ,QA, IA, FA, δA) and B = (Σ,QB, IB, FB, δB), the set S1
A,B

Output: TRUE if L(A) ⊆ L(B). Otherwise, FALSE.
Next := G1

A,B; Processed := ∅;1

while Next 6= ∅ do2

Pick and remove a supergraph g from Next ;3

if ∃h ∈ Processed : ¬DGT (h,g) ∨ ¬DGT (g,h) ∨ ¬DGT (g,g) then4

return FALSE ;
Add g to Processed ;5

foreach h ∈ S1
A,B such that 〈g,h〉 is composable and g; h /∈ Processed do6

Add g; h to Next ;

return TRUE ;7

E Correctness of Algorithm 3

We first provide a proof of Theorem 2.
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Proof (Theorem 2). We show instead that there is a pair of supergraphs in SfA,B
that fails the relaxed double-graph test iff L(A) * L(B).

First, assume that 〈f ,g〉 fails the relaxed double-graph test for some f ,g ∈
SfA,B. Let Zfg be the ω-regular language L(f) · L(g)ω. Zfg is non-empty because
f ,g ∈ SfA,B. Furthermore, Zfg ⊆ L(A) because q �A q1, q2 �A q1, and q2 ∈ FA.
Finally, Zfg ∩ L(B) = ∅ because 〈f, g〉 fails the lasso-finding test (Lemma 14).
Thus L(A) * L(B).

If L(A) 6⊆ L(B), then by Lemma 9 and Lemma 10, there is a pair of super-
graphs 〈f ,g〉 ∈ SfA,B that fail the (stronger) double graph test, i.e., the double
graph test in the sense of Section 5. Therefore, 〈f ,g〉 also fails the relaxed double
graph test in the sense of the new weaker version of Definition 3. ut

The following lemma states the closure of SmA,B under composition.

Lemma 21. For any supergraphs e, f ∈ SmA,B that are composable, e; f ∈ SmA,B.

Proof. Let e = 〈〈p, q〉, e〉 and f = 〈〈q, r〉, f〉. By the definition of SmA,B, there are
supergraphs g,h ∈ SfA,B such that g = 〈〈p, q〉, g〉,h = 〈〈q, r〉, h〉 where g, h ∈ GfB
and e 6∗ g and f 6∗ h. As is shown in the proof of Lemma 8, e; f 6∗ g;h. By the
definition of SfA,B and as g,h ∈ SfA,B, there are words w1 ∈ L(p, q) ∩ L(g) and
w2 ∈ L(q, r) ∩ L(h). The word w1.w2 must also be in L(p, r) and by Lemma 13
w1.w2 ∈ L(g;h). This means that L(g;h) ∩ L(p, r) 6= ∅ and also that g;h ∈ GfB.
We can conclude that g; h ∈ SfA,B ⊆ SmA,B. ut

Further, we state and prove a lemma about the preservation of the relaxed
double-graph test on v∀∃S -bigger supergraphs.

Lemma 22. Let e, f , g, h be graphs in SA,B such that {f ,h} ∩ SmA,B 6= ∅,
e v∀∃S g, and f v∀∃S h. If 〈e, f〉 passes the relaxed double-graph test, then 〈g,h〉
passes the relaxed double-graph test too.

Proof. We may equivalently show that if 〈g,h〉 fails the relaxed double-graph
test, then 〈e, f〉 fails the relaxed double-graph test too. Assume that 〈g,h〉 fails
the relaxed double-graph test. Then, g = 〈〈p, q1〉, g〉 and h = 〈〈q2, q3〉, h〉 such
that q1 �A q2, q3 �A q2, p ∈ IA, q3 ∈ FA, and 〈g, h〉 fails the lasso-finding
test. Let e = 〈〈p′, q′1〉, e〉 and f = 〈〈q′2, q′3〉, f〉. From e v∀∃S g and f v∀∃S h, we
have that p′ = p, q′1 �A q1, q′2 = q2, q′3 �A q3. Thus p′ ∈ IA and q′3 ∈ FA.
Furthermore, q′1 �A q1 �A q2 = q′2 and q′3 �A q3 �A q2 = q′2. Moreover, due to
Lemma 7, 〈e, f〉 fails the lasso-finding test. Hence, 〈e, f〉 fails the relaxed double-
graph test. ut

Below, we provide several auxiliary lemmas used in the proof of the correct-
ness of Algorithm 3.

Lemma 23. For any g,h ∈ SA,B, if g 6∗S h, then h '∀∃S g.

Proof. Immediately by Lemma 4 and the definitions of v∀∃S and 6∗S . ut
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Lemma 24. For any g ∈ S1
A,B, there is some f ∈ Init on Line 7 of Algorithm 3

such that f v∀∃S g.

Proof. The proof is analogous to the proof of Lemma 15, it only uses Lemma 23
instead of Lemma 4. ut

Lemma 25. Once any graph f appears in the set Next in between of Lines 8–16
of Algorithm 3, then from this point in the run of the algorithm onwards there
is always some f ′ ∈ Next ∪ Processed such that f ′ v∀∃S f .

Proof. Analogous to the proof of Lemma 16. ut

Lemma 26. Given a supergraph g = 〈〈p, q〉, g〉 ∈ S1
A,B and a state p′ ∈ QA

such that p′ �A p, then there exists 〈〈p′, q′〉, g〉 ∈ S1
A,B such that q′ �A q.

Proof. Since g ∈ S1
A,B, there is some a ∈ ΣA ∩ L(g) such that p a−→ q. Since

p′ �A p, there must be some q′ ∈ QA such that p′ a−→ q′ and q′ �A q. We have
〈p′, q′〉 ∈ E1

A and 〈〈p′, q′〉, g〉 ∈ S1
A,B. ut

Let Processedend denote the contents of the set Processed when Algorithm 3
terminates.

Lemma 27. If Algorithm 3 returns TRUE, then for every g ∈ SfA,B, there exists
some h ∈ Processedend such that h v∀∃S g.

Proof. By Lemma 20, the supergraph g is a finite composition g0; g1; . . . ; gn of
n+1 supergraphs from S1

A,B. We now prove by induction that for each 0 ≤ i ≤ n,
there exists a supergraph hi ∈ Processedend such that hi v∀∃S g0; g1; . . . ; gi.

We start with the base case. Due to Lemma 24 and the code on Line 7, there
is some f0 ∈ Next such that f0 v∀∃S g0 when the second loop is entered for the
first time. Using Lemma 25 and the fact that Next is empty when Algorithm 3
returns TRUE, the base case is proved.

For the inductive step, we assume that there exists a graph hk ∈ Processedend

such that hk = 〈hk, hk〉 = 〈〈p, qhk
〉, hk〉 v∀∃S g0; g1; . . . ; gk = g = 〈g, g〉 =

〈〈p, qg〉, g〉 where qhk
�A qg and hk v∀∃ g. We further have gk+1 = 〈gk+1, gk+1〉 =

〈〈qg, q〉, gk+1〉 ∈ S1
A,B. Since gk+1 ∈ S1

A,B and qhk
�A qg, due to Lemma 26, there

must be some q′ ∈ QA such that q′ �A q and ek+1 = 〈〈qhk
, q′〉, gk+1〉 ∈ S1

A,B. We
have that ek+1 E∀∃ gk+1. Due to Lemma 24, we know that there is fk+1 ∈ Init
from Line 7 onwards such that fk+1 v∀∃S ek+1. fk+1 v∀∃S ek+1 E∀∃ gk+1 im-
plies that fk+1 E∀∃ gk+1 (since v∀∃S ⊆ E∀∃ and E∀∃ is obviously transitive).
Therefore, by Lemma 11, we get hk; fk+1 v∀∃S g; gk+1. By Lemma 23, we have
MinS(hk; fk+1) v∀∃S g; gk+1. The supergraph MinS(hk; fk+1) is added into Next
on Line 16 right after hk is moved to Processed on Line 11 (unless there is already
some v∀∃S -smaller graph in Processed∪Next). From Lemma 25 and from the fact
that Next is empty when Algorithm 3 returns TRUE, it is then clear that there
is some graph hk+1 ∈ Processedend such that hk+1 v∀∃S g0; g1; . . . ; gk+1. ut
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Lemma 28. All supergraphs tested on the relaxed double-graph test within a run
of Algorithm 3 are in SmA,B.

Proof. The proof is an analogous to the proof of Lemma 17. The class SmA,B is
closed under composition by Lemma 21 and it is obviously closed under MinS .
The algorithm starts with graphs from SmA,B and creates new supergraphs using
these two operations only. ut

Lemma 29. Algorithm 3 eventually terminates.

Proof. Analogous to the proof of Lemma 19. ut

Now we are finally able to prove Theorem 3.

Proof (Theorem 3). By Lemma 29, Algorithm 3 eventually terminates and re-
turns a value.

First, we prove by contradiction that if TRUE is returned, L(A) ⊆ L(B)
holds. Assume that TRUE is returned and L(A) 6⊆ L(B). Since L(A) 6⊆ L(B),
Theorem 2 implies that either (1) there is some pair of supergraphs g 6= h ∈ SfA,B
such that 〈g,h〉 fails the relaxed double-graph test, or (2) there is a supergraph
f ∈ SfA,B such that 〈f , f〉 fails the relaxed double-graph test.

Let us start with Case (1). By Lemma 27, we have that there exist some
g′,h′ ∈ Processedend such that g′ v∀∃S g and h′ v∀∃S h. Assume that g′ is added
to Processed after h′ (the other case being symmetrical due to the “or” used
in the condition on Line 10). When g′ is about to be added to Processed , the
algorithm performs a relaxed double-graph test on 〈g′,h′〉 on Line 10. Since
〈g,h〉 fails the relaxed double-graph test, g′ v∀∃S g, and h′ v∀∃S h, we know by
Lemma 22 that 〈g′,h′〉 also fails the relaxed double-graph test, and thus the
algorithm returns FALSE, which leads to a contradiction.

In Case (2), by Lemma 27, we have that there exists some f ′ ∈ Processedend

such that f ′ v∀∃S f . A relaxed double-graph test on 〈f ′, f ′〉 is performed on Line
10, right before moving f ′ to Processed , which happens on Line 11. Since 〈f , f〉
fails the relaxed double-graph test, f ′ v∀∃S f , we know by Lemma 22 that 〈f ′, f ′〉
also fails the relaxed double-graph test, and thus the algorithm returns FALSE,
which again leads to a contradiction.

On the other hand, if L(A) ⊆ L(B), then due to Theorem 2, each pair of
supergraphs 〈g,h〉 for any g,h ∈ SfA,B passes the relaxed double-graph test.
At the same time, Lemma 28 guarantees that any two supergraphs g′,h′ that
are are subject to the relaxed double-graph test in the run of Algorithm 3 are
from SmA,B. By the definition of SmA,B, there are g,h ∈ SfA,B with g′ 6∗S g and
h′ 6∗S h, which by Lemma 23 gives g v∀∃S g′ and h v∀∃S h′. Lemma 22 implies
that 〈g′,h′〉 passes the relaxed double-graph test. Therefore, the algorithm can
only return TRUE in this case. ut
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F Additional Results on the Experiments

Experiment Description of Machines Used

Tabakov and Vardi’s
(Universality)

A machine with 8 Intel(R) Xeon(R) 2.0GHz processors. Each
instance of the experiment has a dedicated CPU core with
2GB memory.

Random LTL
(Universality)

A machine with 2 Intel(R) Xeon(R) 2.66GHz processors.
Each instance of the experiment has a dedicated CPU core
with 2GB memory.

Mutual Exclusion
Algorithms
(Inclusion)

A machine with 8 Intel(R) Xeon(R) 2.0GHz processors (MCS
queue lock, Dining phil. Ver.1) and a machine with 8 AMD
Opteron(tm) 2.8GHz processors (other experiments). Each
instance of the experiment has a dedicated CPU core with
8GB memory.

Random LTL
(Inclusion)

A machine with 2 Intel(R) Xeon(R) 2.66GHz processors.
Each instance of the experiment has a dedicated CPU core
with 2GB memory.

Table 2. Machines we used in the experiments.
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Fig. 4. Average time for universality checking on Tabakov and Vardi’s random model.
Each point in the figure is the average result of 100 Büchi automata. If both methods
cannot finish the task within the timeout period (3500 seconds), we simply ignore this
test while computing the average result. If only one method finishes the task within
the timeout period while the other does not, we use 3500 seconds as the execution
time of the failed task. From the figure, one can see that our simulation subsumption
technique outperforms the basic subsumption in most of the cases.

Original Error Subsumption Simulation Sub.

Tr. St. Tr. St. L(E)⊆L(O) L(O)⊆L(E) L(E)⊆L(O) L(O)⊆L(E)

Bakery 2697 1506 2085 1146 >1day >1day 2m47s(F) 20m(F)

Peterson 34 20 33 20 2.1s(T) 0.17s(F) 0.43s(T) 0.08s(F)

Dining phil. (Ver.1) 212 80 464 161 1m18s(F) >1day 3.7s(F) >1day

Dining phil. (Ver.2) 212 80 482 161 3m1s(F) >1day 5s(F) >1day

Fisher 1395 634 3850 1532 >1day >1day 14h4m(F) >1day

MCS queue lock 21503 7963 3222 1408 oom 3m10s(F) 25m55s(T) 1m39s(F)

Table 3. Language inclusion checking on models of mutual exclusion algorithms (where
all states are accepting). The rows “Original” and “Error” are the statistical data of
the BA of the original model and the erroneous model, respectively. We test both
L(E) ⊆ L(O) and L(O) ⊆ L(E). The result “>1day” indicates that the task cannot be
finished within one day, and “oom” that the task required memory > 8GB. If a task
completes successfully, we record the run time and whether language inclusion holds
(“T”) or not (“F”).
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