140,890 research outputs found
Polarization and ellipticity of high-order harmonics from aligned molecules generated by linearly polarized intense laser pulses
We present theoretical calculations for polarization and ellipticity of
high-order harmonics from aligned N, CO, and O molecules generated
by linearly polarized lasers. Within the rescattering model, the two
polarization amplitudes of the harmonics are determined by the
photo-recombination amplitudes for photons emitted parallel and perpendicular
to the direction of the {\em same} returning electron wave packet. Our results
show clear species-dependent polarization states, in excellent agreement with
experiments. We further note that the measured polarization ellipse of the
harmonic furnishes the needed parameters for a "complete" experiment in
molecules.Comment: 4 pages, 4 figure
Eccentricity Evolution of Extrasolar Multiple Planetary Systems due to the Depletion of Nascent Protostellar Disks
Most extrasolar planets are observed to have eccentricities much larger than
those in the solar system. Some of these planets have sibling planets, with
comparable masses, orbiting around the same host stars. In these multiple
planetary systems, eccentricity is modulated by the planets' mutual secular
interaction as a consequence of angular momentum exchange between them. For
mature planets, the eigenfrequencies of this modulation are determined by their
mass and semi-major axis ratios. But, prior to the disk depletion, self gravity
of the planets' nascent disks dominates the precession eigenfrequencies. We
examine here the initial evolution of young planets' eccentricity due to the
apsidal libration or circulation induced by both the secular interaction
between them and the self gravity of their nascent disks. We show that as the
latter effect declines adiabatically with disk depletion, the modulation
amplitude of the planets' relative phase of periapse is approximately invariant
despite the time-asymmetrical exchange of angular momentum between planets.
However, as the young planets' orbits pass through a state of secular
resonance, their mean eccentricities undergo systematic quantitative changes.
For applications, we analyze the eccentricity evolution of planets around
Upsilon Andromedae and HD168443 during the epoch of protostellar disk
depletion. We find that the disk depletion can change the planets' eccentricity
ratio. However, the relatively large amplitude of the planets' eccentricity
cannot be excited if all the planets had small initial eccentricities.Comment: 50 pages including 11 figures, submitted to Ap
Probing molecular frame photoionization via laser generated high-order harmonics from aligned molecules
Present photoionization experiments cannot measure molecular frame
photoelectron angular distributions (MFPAD) from the outermost valence
electrons of molecules. We show that details of the MFPAD can be retrieved with
high-order harmonics generated by infrared lasers from aligned molecules. Using
accurately calculated photoionization transition dipole moments for
fixed-in-space molecules, we show that the dependence of the magnitude and
phase of the high-order harmonics on the alignment angle of the molecules
observed in recent experiments can be quantitatively reproduced. This result
provides the needed theoretical basis for ultrafast dynamic chemical imaging
using infrared laser pulses.Comment: 5 pages, 4 figure
Optically Induced Second Harmonic Generation by Six-wave Mixing: A Novel Probe of Solute Orientational Dynamics
Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets
Extrasolar planets found with radial velocity surveys have masses ranging
from several Earth to several Jupiter masses. While mass accretion onto
protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a
global depletion of gas, such a mechanism is unlikely to have stalled the
growth of some known planetary systems which contain relatively low-mass and
close-in planets along with more massive and longer period companions. Here, we
suggest a potential solution for this conundrum. In general, supersonic infall
of surrounding gas onto a protoplanet is only possible interior to both of its
Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche
radii are equal to the disk thickness. Above this mass, the protoplanets' tidal
perturbation induces the formation of a gap. Although the disk gas may continue
to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe
is quenched. Using two different schemes, we present the results of numerical
simulations and analysis to show that the accretion rate increases rapidly with
the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk
thickness. In regions with low geometric aspect ratios, gas accretion is
quenched with relatively low protoplanetary masses. This effect is important
for determining the gas-giant planets' mass function, the distribution of their
masses within multiple planet systems around solar type stars, and for
suppressing the emergence of gas-giants around low mass stars
Non-Thermal Production of WIMPs and the Sub-Galactic Structure of the Universe
There is increasing evidence that conventional cold dark matter (CDM) models
lead to conflicts between observations and numerical simulations of dark matter
halos on sub-galactic scales. Spergel and Steinhardt showed that if the CDM is
strongly self-interacting, then the conflicts disappear. However, the
assumption of strong self-interaction would rule out the favored candidates for
CDM, namely weakly interacting massive particles (WIMPs), such as the
neutralino. In this paper we propose a mechanism of non-thermal production of
WIMPs and study its implications on the power spectrum. We find that the
non-vanishing velocity of the WIMPs suppresses the power spectrum on small
scales compared to what it obtained in the conventional CDM model. Our results
show that, in this context, WIMPs as candidates for dark matter can work well
both on large scales and on sub-galactic scales.Comment: 6 pages, 2 figures; typo corrected; to appear in PR
Coherent Diabatic Ion Transport and Separation in a Multi-Zone Trap Array
We investigate the motional dynamics of single and multiple ions during
transport between and separation into spatially distinct locations in a
multi-zone linear Paul trap. A single 9Be+ ion in a 2 MHz harmonic well located
in one zone was laser-cooled to near its ground state of motion and transported
370 micrometers by moving the well to another zone. This was accomplished in 8
microseconds, corresponding to 16 periods of oscillation. Starting from a state
with n=0.1 quanta, during transport the ion was excited to a displaced coherent
state with n=1.6 quanta but on completion was returned close to its motional
ground state with n=0.2. Similar results were achieved for the transport of two
ions. We also separated chains of up to 9 ions from one potential well to two
distinct potential wells. With two ions this was accomplished in 55
microseconds, with final excitations of about 2 quanta for each ion. Fast
coherent transport and separation can significantly reduce the time overhead in
certain architectures for scalable quantum information processing with trapped
ions.Comment: 5 pages, 5 figure
- …
