1,232 research outputs found

    Vortex length, vortex energy and fractal dimension of superfluid turbulence at very low temperature

    Full text link
    By assuming a self-similar structure for Kelvin waves along vortex loops with successive smaller scale features, we model the fractal dimension of a superfluid vortex tangle in the zero temperature limit. Our model assumes that at each step the total energy of the vortices is conserved, but the total length can change. We obtain a relation between the fractal dimension and the exponent describing how the vortex energy per unit length changes with the length scale. This relation does not depend on the specific model, and shows that if smaller length scales make a decreasing relative contribution to the energy per unit length of vortex lines, the fractal dimension will be higher than unity. Finally, for the sake of more concrete illustration, we relate the fractal dimension of the tangle to the scaling exponents of amplitude and wavelength of a cascade of Kelvin waves.Comment: 12 pages, 1 figur

    The effects of nonlocality on the evolution of higher order fluxes in non-equilibrium thermodynamics

    Full text link
    The role of gradient dependent constitutive spaces is investigated on the example of Extended Thermodynamics of rigid heat conductors. Different levels of nonlocality are developed and the different versions of extended thermodynamics are classified. The local form of the entropy density plays a crucial role in the investigations. The entropy inequality is solved under suitable constitutive assumptions. Balance form of evolution equations is obtained in special cases. Closure relations are derived on a phenomenological level.Comment: 16 pages, 1 figur

    Diffuse-interface model for rapid phase transformations in nonequilibrium systems

    Get PDF
    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe the transformation within the diffuse interface, we use the phase-field model which allows us to follow the steep but smooth change of phases within the width of diffuse interface. The governing equations of the phase-field model are derived for the hyperbolic model, model with memory, and for a model of nonlinear evolution of transformation within the diffuse-interface. The consistency of the model is proved by the condition of positive entropy production and by the outcomes of the fluctuation-dissipation theorem. A comparison with the existing sharp-interface and diffuse-interface versions of the model is given.Comment: 15 pages, regular article submitted to Physical Review

    Test of Information Theory on the Boltzmann Equation

    Get PDF
    We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.Comment: 12 page

    Ideal gas sources for the Lemaitre-Tolman-Bondi metrics

    Full text link
    New exact solutions emerge by replacing the dust source of the Lem\^aitre-Tolman-Bondi metrics with a viscous fluid satisfying the monatomic gas equation of state. The solutions have a consistent thermodynamical interpretation. The most general transport equation of Extended Irreversible Thermodynamics is satisfied, with phenomenological coefficients bearing a close resemblance to those characterizing a non relativistic Maxwell-Bolzmann gas.Comment: 7 pages, Plain TeX with IOP macros, important corrections to previous version, 3 figures (to appear in Classical and Quantum Gravity, June 1998

    Correlations of Globular Cluster Properties: Their Interpretations and Uses

    Get PDF
    Correlations among the independently measured physical properties of globular clusters (GCs) can provide powerful tests for theoretical models and new insights into their dynamics, formation, and evolution. We review briefly some of the previous work, and present preliminary results from a comparative study of GC correlations in the Local Group galaxies. The results so far indicate that these diverse GC systems follow the same fundamental correlations, suggesting a commonality of formative and evolutionary processes which produce them.Comment: An invited review, to appear in "New Horizons in Globular Cluster Astronomy", eds. G. Piotto, G. Meylan, S.G. Djorgovski, and M. Riello, ASPCS, in press (2003). Latex file, 8 pages, 5 eps figures, style files include

    Knudsen Effect in a Nonequilibrium Gas

    Full text link
    From the molecular dynamics simulation of a system of hard-core disks in which an equilibrium cell is connected with a nonequilibrium cell, it is confirmed that the pressure difference between two cells depends on the direction of the heat flux. From the boundary layer analysis, the velocity distribution function in the boundary layer is obtained. The agreement between the theoretical result and the numerical result is fairly good.Comment: 4pages, 4figure

    Nonequilibrium corrections in the pressure tensor due to an energy flux

    Full text link
    The physical interpretation of the nonequilibrium corrections in the pressure tensor for radiation submitted to an energy flux obtained in some previous works is revisited. Such pressure tensor is shown to describe a moving equilibrium system but not a real nonequilibrium situation.Comment: 4 pages, REVTeX, Brief Report to appear in PRE Dec 9

    Some analytical models of radiating collapsing spheres

    Get PDF
    We present some analytical solutions to the Einstein equations, describing radiating collapsing spheres in the diffusion approximation. Solutions allow for modeling physical reasonable situations. The temperature is calculated for each solution, using a hyperbolic transport equation, which permits to exhibit the influence of relaxational effects on the dynamics of the system.Comment: 17 pages Late

    Magnetic relaxation in the Bianchi-I universe

    Get PDF
    Extended Einstein-Maxwell model and its application to the problem of evolution of magnetized Bianchi-I Universe are considered. The evolution of medium magnetization is governed by a relaxation type extended constitutive equation. The series of exact solutions to the extended master equations is obtained and discussed. The anisotropic expansion of the Bianchi-I Universe is shown to become non-monotonic (accelerated/decelerated) in both principal directions (along the magnetic field and orthogonal to it). A specific type of expansion, the so-called evolution with hidden magnetic field, is shown to appear when the magnetization effectively screens the magnetic field and the latter disappears from the equations for gravitational field.Comment: 32 page
    corecore