21 research outputs found

    Feedforward Inhibition Underlies the Propagation of Cholinergically Induced Gamma Oscillations from Hippocampal CA3 to CA1.

    Get PDF
    Gamma frequency (30-80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse hippocampal slices. The firing of the vast majority of CA1 neurons and all CA3 neurons was phase-coupled to the oscillations recorded in the stratum pyramidale of the CA1 region. The predominant synaptic input to CA1 interneurons was excitatory, and their discharge followed the firing of CA3 pyramidal cells at a latency indicative of monosynaptic connections. Correlation analysis of the input-output characteristics of the neurons and local pharmacological block of inhibition both agree with a model in which glutamatergic CA3 input controls the firing of CA1 interneurons, with local pyramidal cell activity having a minimal role. The firing of phase-coupled CA1 pyramidal cells was controlled principally by their inhibitory inputs, which dominated over excitation. Our results indicate that the synchronous firing of CA3 pyramidal cells rhythmically recruits CA1 interneurons and that this feedforward inhibition generates the oscillatory activity in CA1. These findings identify distinct synaptic mechanisms underlying the generation of gamma frequency oscillations in neighboring hippocampal subregions

    Synaptic integrative mechanisms for spatial cognition

    Get PDF

    Resonance-Based Mechanisms of Generation of Relaxation Oscillations in Networks of Non-oscillatory Neurons

    No full text
    We investigate a minimal network model consisting of a 2D linear (non-oscillatory) resonator and a 1D linear cell, mutually inhibited with piecewise-linear graded synapses. We demonstrate that this network can produce oscillations in certain parameter regimes and the corresponding limit gradually transition from regular oscillations (of non-relaxation type) to relaxation oscillations as the levels of mutual inhibition increase.Fil: Bel, Andrea Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Horacio G. Rotstein. New Jersey Institute of Technology; Estados Unidos. Rutgers University; Estados UnidosMURPHYS-HSFS: Interdisciplinary Workshop on Multiple Scale Systems, Systems with Hysteresis and Trends in Dynamical SystemsBarcelonaEspañaCentre de Recerca Matemátic

    Transition between fast and slow gamma modes in rat hippocampus area CA1in vitrois modulated by slow CA3 gamma oscillations

    No full text
    AbstractHippocampal gamma oscillations have been associated with cognitive functions including navigation and memory encoding/retrieval. Gamma oscillations in area CA1 are thought to depend on the oscillatory drive from CA3 (slow gamma) or the entorhinal cortex (fast gamma). Here we show that the local CA1 network can generate its own fast gamma that can be suppressed by slow gamma-paced inputs from CA3. Moderate acetylcholine receptor activation induces fast (45 ± 1 Hz) gamma in rat CA1 minislices and slow (33 ± 1 Hz) gamma in CA3 minislices in vitro. Using pharmacological tools, current-source density analysis and intracellular recordings from pyramidal cells and fast-spiking stratum pyramidale interneurons, we demonstrate that fast gamma in CA1 is of the pyramidal–interneuron network gamma (PING) type, with the firing of principal cells paced by recurrent perisomal IPSCs. The oscillation frequency was only weakly dependent on IPSC amplitude, and decreased to that of CA3 slow gamma by reducing IPSC decay rate or reducing interneuron activation through tonic inhibition of interneurons. Fast gamma in CA1 was replaced by slow CA3-driven gamma in unlesioned slices, which could be mimicked in CA1 minislices by sub-threshold 35 Hz Schaffer collateral stimulation that activated fast-spiking interneurons but hyperpolarised pyramidal cells, suggesting that slow gamma frequency CA3 outputs can suppress the CA1 fast gamma-generating network by feed-forward inhibition and replaces it with a slower gamma oscillation driven by feed-forward inhibition. The transition between the two gamma oscillation modes in CA1 might allow it to alternate between effective communication with the medial entorhinal cortex and CA3, which have different roles in encoding and recall of memory
    corecore