62 research outputs found

    EZH2 promotes a bi-lineage identity in basal-like breast cancer cells

    Get PDF
    The mechanisms regulating breast cancer differentiation state are poorly understood. Of particular interest are molecular regulators controlling the highly aggressive and poorly differentiated traits of basal-like breast carcinomas. Here we show that the Polycomb factor EZH2 maintains the differentiation state of basal-like breast cancer cells, and promotes the expression of progenitor-associated and basal-lineage genes. Specifically, EZH2 regulates the composition of basal-like breast cancer cell populations by promoting a ‘bi-lineage’ differentiation state, in which cells co-express basal- and luminal-lineage markers. We show that human basal-like breast cancers contain a subpopulation of bi-lineage cells, and that EZH2-deficient cells give rise to tumors with a decreased proportion of such cells. Bi-lineage cells express genes that are active in normal luminal progenitors, and possess increased colony-formation capacity, consistent with a primitive differentiation state. We found that GATA3, a driver of luminal differentiation, performs a function opposite to EZH2, acting to suppress bi-lineage identity and luminal-progenitor gene expression. GATA3 levels increase upon EZH2 silencing, mediating a decrease in bi-lineage cell numbers. Our findings reveal a novel role for EZH2 in controlling basal-like breast cancer differentiation state and intra-tumoral cell composition

    Genotranscriptomic meta-analysis of the Polycomb gene CBX2 in human cancers: initial evidence of an oncogenic role

    Get PDF
    Background: Polycomb group (PcG) proteins are histone modifiers known to transcriptionally silence key tumour suppressor genes in multiple human cancers. The chromobox proteins (CBX2, 4, 6, 7, and 8) are critical components of PcG-mediated repression. Four of them have been associated with tumour biology, but the role of CBX2 in cancer remains largely uncharacterised. Methods: Addressing this issue, we conducted a comprehensive and unbiased genotranscriptomic meta-analysis of CBX2 in human cancers using the COSMIC and Oncomine databases. Results: We discovered changes in gene expression that are suggestive of a widespread oncogenic role for CBX2. Our genetic analysis of 8013 tumours spanning 29 tissue types revealed no inactivating chromosomal aberrations and only 40 point mutations at the CBX2 locus. In contrast, the overall rate of CBX2 amplification averaged 10% in all combined neoplasms but exceeded 30% in ovarian, breast, and lung tumours. In addition, transcriptomic analyses revealed a strong tendency for increased CBX2 mRNA levels in many cancers compared with normal tissues, independently of CDKN2A/B silencing. Furthermore, CBX2 upregulation and amplification significantly correlated with metastatic progression and lower overall survival in many cancer types, particularly those of the breast. Conclusions: Overall, we report that the molecular profile of CBX2 is suggestive of an oncogenic role. As CBX2 has never been studied in human neoplasms, our results provide the rationale to further investigate the function of CBX2 in the context of cancer cells

    Encoding of Naturalistic Stimuli by Local Field Potential Spectra in Networks of Excitatory and Inhibitory Neurons

    Get PDF
    Recordings of local field potentials (LFPs) reveal that the sensory cortex displays rhythmic activity and fluctuations over a wide range of frequencies and amplitudes. Yet, the role of this kind of activity in encoding sensory information remains largely unknown. To understand the rules of translation between the structure of sensory stimuli and the fluctuations of cortical responses, we simulated a sparsely connected network of excitatory and inhibitory neurons modeling a local cortical population, and we determined how the LFPs generated by the network encode information about input stimuli. We first considered simple static and periodic stimuli and then naturalistic input stimuli based on electrophysiological recordings from the thalamus of anesthetized monkeys watching natural movie scenes. We found that the simulated network produced stimulus-related LFP changes that were in striking agreement with the LFPs obtained from the primary visual cortex. Moreover, our results demonstrate that the network encoded static input spike rates into gamma-range oscillations generated by inhibitory–excitatory neural interactions and encoded slow dynamic features of the input into slow LFP fluctuations mediated by stimulus–neural interactions. The model cortical network processed dynamic stimuli with naturalistic temporal structure by using low and high response frequencies as independent communication channels, again in agreement with recent reports from visual cortex responses to naturalistic movies. One potential function of this frequency decomposition into independent information channels operated by the cortical network may be that of enhancing the capacity of the cortical column to encode our complex sensory environment

    Electrodiagnostic subtyping in Guillain–Barr\ue9 syndrome patients in the International Guillain–Barr\ue9 Outcome Study

    Get PDF
    \ua9 2024 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.Background and purpose: Various electrodiagnostic criteria have been developed in Guillain–Barr\ue9 syndrome (GBS). Their performance in a broad representation of GBS patients has not been evaluated. Motor conduction data from the International GBS Outcome Study (IGOS) cohort were used to compare two widely used criterion sets and relate these to diagnostic amyotrophic lateral sclerosis criteria. Methods: From the first 1500 patients in IGOS, nerve conduction studies from 1137 (75.8%) were available for the current study. These patients were classified according to nerve conduction studies criteria proposed by Hadden and Rajabally. Results: Of the 1137 studies, 68.3% (N = 777) were classified identically according to criteria by Hadden and Rajabally: 111 (9.8%) axonal, 366 (32.2%) demyelinating, 195 (17.2%) equivocal, 35 (3.1%) inexcitable and 70 (6.2%) normal. Thus, 360 studies (31.7%) were classified differently. The areas of differences were as follows: 155 studies (13.6%) classified as demyelinating by Hadden and axonal by Rajabally; 122 studies (10.7%) classified as demyelinating by Hadden and equivocal by Rajabally; and 75 studies (6.6%) classified as equivocal by Hadden and axonal by Rajabally. Due to more strictly defined cutoffs fewer patients fulfilled demyelinating criteria by Rajabally than by Hadden, making more patients eligible for axonal or equivocal classification by Rajabally. In 234 (68.6%) axonal studies by Rajabally the revised El Escorial (amyotrophic lateral sclerosis) criteria were fulfilled; in axonal cases by Hadden this was 1.8%. Conclusions and discussion: This study shows that electrodiagnosis in GBS is dependent on the criterion set utilized, both of which are based on expert opinion. Reappraisal of electrodiagnostic subtyping in GBS is warranted

    Predictions not commands: active inference in the motor system

    Full text link

    Buchbesprechungen

    No full text

    Modeling ductal carcinoma in situ: a HER2–Notch3 collaboration enables luminal filling

    Get PDF
    A large fraction of ductal carcinoma in situ (DCIS), a non-invasive precursor lesion of invasive breast cancer, overexpresses the HER2/neu oncogene. The ducts of DCIS are abnormally filled with cells that evade apoptosis, but the underlying mechanisms remain incompletely understood. We overexpressed HER2 in mammary epithelial cells and observed growth factor-independent proliferation. When grown in extracellular matrix as three-dimensional spheroids, control cells developed a hollow lumen, but HER2-overexpressing cells populated the lumen by evading apoptosis. We demonstrate that HER2 overexpression in this cellular model of DCIS drives transcriptional upregulation of multiple components of the Notch survival pathway. Importantly, luminal filling required upregulation of a signaling pathway comprising Notch3, its cleaved intracellular domain and the transcriptional regulator HES1, resulting in elevated levels of c-MYC and cyclin D1. In line with HER2-Notch3 collaboration, drugs intercepting either arm reverted the DCIS-like phenotype. In addition, we report upregulation of Notch3 in hyperplastic lesions of HER2 transgenic animals, as well as an association between HER2 levels and expression levels of components of the Notch pathway in tumor specimens of breast cancer patients. Therefore, it is conceivable that the integration of the Notch and HER2 signaling pathways contributes to the pathophysiology of DCIS
    • …
    corecore