371 research outputs found

    Ligand-Receptor Interactions

    Full text link
    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the interest of biologists to the kinetic and mechanical properties of cell membrane receptors. The aim of this review is to give a description of these advances that benefitted from a largely multidisciplinar approach

    In photosynthesis, oxygen comes from water: from a 1787 book for women by Monsieur De Fourcroy

    Get PDF
    Abstract It is now well established that the source of oxygen in photosynthesis is water. The earliest suggestion previously known to us had come from René Bernard Wurmser (1930). Here, we highlight an earlier report by Monsieur De Fourcroy (1787), who had already discussed the broad outlines of such a hypothesis in a book on Chemistry written for women. We present here a free translation of a passage from this book, with the original text in French as an Appendix

    Links between maternal postpartum depressive symptoms, maternal distress, infant gender and sensitivity in a high-risk population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maternal postpartum depression has an impact on mother-infant interaction. Mothers with depression display less positive affect and sensitivity in interaction with their infants compared to non-depressed mothers. Depressed women also show more signs of distress and difficulties adjusting to their role as mothers than non-depressed women. In addition, depressive mothers are reported to be affectively more negative with their sons than with daughters.</p> <p>Methods</p> <p>A non-clinical sample of 106 mother-infant dyads at psychosocial risk (poverty, alcohol or drug abuse, lack of social support, teenage mothers and maternal psychic disorder) was investigated with EPDS (maternal postpartum depressive symptoms), the CARE-Index (maternal sensitivity in a dyadic context) and PSI-SF (maternal distress). The baseline data were collected when the babies had reached 19 weeks of age.</p> <p>Results</p> <p>A hierarchical regression analysis yielded a highly significant relation between the PSI-SF subscale "parental distress" and the EPDS total score, accounting for 55% of the variance in the EPDS. The other variables did not significantly predict the severity of depressive symptoms. A two-way ANOVA with "infant gender" and "maternal postpartum depressive symptoms" showed no interaction effect on maternal sensitivity.</p> <p>Conclusions</p> <p>Depressive symptoms and maternal sensitivity were not linked. It is likely that we could not find any relation between both variables due to different measuring methods (self-reporting and observation). Maternal distress was strongly related to maternal depressive symptoms, probably due to the generally increased burden in the sample, and contributed to 55% of the variance of postpartum depressive symptoms.</p

    Age-related changes in rat bone-marrow mesenchymal stem cell plasticity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficacy of adult stem cells is known to be compromised as a function of age. This therefore raises questions about the effectiveness of autologous cell therapy in elderly patients.</p> <p>Results</p> <p>We demonstrated that the expression profile of stemness markers was altered in BM-MSCs derived from old rats. BM-MSCs from young rats (4 months) expressed Oct-4, Sox-2 and NANOG, but we failed to detect Sox-2 and NANOG in BM-MSCs from older animals (15 months). Chondrogenic, osteogenic and adipogenic potential is compromised in old BM-MSCs. Stimulation with a cocktail mixture of bone morphogenetic protein (BMP-2), fibroblast growth factor (FGF-2) and insulin-like growth factor (IGF-1) induced cardiomyogenesis in young BM-MSCs but not old BM-MSCs. Significant differences in the expression of gap junction protein connexin-43 were observed between young and old BM-MSCs. Young and old BM-MSCs fused with neonatal ventricular cardiomyocytes in co-culture and expressed key cardiac transcription factors and structural proteins. Cells from old animals expressed significantly lower levels of VEGF, IGF, EGF, and G-CSF. Significantly higher levels of DNA double strand break marker γ-H2AX and diminished levels of telomerase activity were observed in old BM-MSCs.</p> <p>Conclusion</p> <p>The results suggest age related differences in the differentiation capacity of BM-MSCs. These changes may affect the efficacy of BM-MSCs for use in stem cell therapy.</p

    CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor initiating cells (TICs) provide a new paradigm for developing original therapeutic strategies.</p> <p>Methods</p> <p>We screened for TICs in 47 human adult brain malignant tumors. Cells forming floating spheres in culture, and endowed with all of the features expected from tumor cells with stem-like properties were obtained from glioblastomas, medulloblastoma but not oligodendrogliomas.</p> <p>Results</p> <p>A long-term self-renewal capacity was particularly observed for cells of malignant glio-neuronal tumors (MGNTs). Cell sorting, karyotyping and proteomic analysis demonstrated cell stability throughout prolonged passages. Xenografts of fewer than 500 cells in Nude mouse brains induced a progressively growing tumor. CD133, CD15/LeX/Ssea-1, CD34 expressions, or exclusion of Hoechst dye occurred in subsets of cells forming spheres, but was not predictive of their capacity to form secondary spheres or tumors, or to resist high doses of temozolomide.</p> <p>Conclusions</p> <p>Our results further highlight the specificity of a subset of high-grade gliomas, MGNT. TICs derived from these tumors represent a new tool to screen for innovative therapies.</p

    Dedifferentiation of Foetal CNS Stem Cells to Mesendoderm-Like Cells through an EMT Process

    Get PDF
    Tissue-specific stem cells are considered to have a limited differentiation potential. Recently, this notion was challenged by reports that showed a broader differentiation potential of neural stem cells, in vitro and in vivo, although the molecular mechanisms that regulate plasticity of neural stem cells are unknown. Here, we report that neural stem cells derived from mouse embryonic cortex respond to Lif and serum in vitro and undergo epithelial to mesenchymal transition (EMT)-mediated dedifferentiation process within 48 h, together with transient upregulation of pluripotency markers and, more notably, upregulation of mesendoderm genes, Brachyury (T) and Sox17. These induced putative mesendoderm cells were injected into early gastrulating chick embryos, which revealed that they integrated more efficiently into mesoderm and endoderm lineages compared to non-induced cells. We also found that TGFβ and Jak/Stat pathways are necessary but not sufficient for the induction of mesendodermal phenotype in neural stem cells. These results provide insights into the regulation of plasticity of neural stem cells through EMT. Dissecting the regulatory pathways involved in these processes may help to gain control over cell fate decisions

    Re-envisioning Addiction Treatment: A Six-Point Plan

    Get PDF
    This article is focused on improving the quality of addiction treatment. Based on observations that patients are leaving treatment too early and/or are continuing to use substances during their care, the authors propose six actions that could help reorient and revitalize this kind of clinical work: (1) conceptualize and treat addictive disorders within a psychiatric/mental health framework; (2) make the creation of a strong therapeutic alliance a core part of the healing process; (3) understand patients’ addictions and other problems using models based on multiple internal parts, voices, or modes; (4) make contingency management and the use of positive reinforcement systems a standard and central practice in all treatment settings; (5) envision long-term change and healing through the lens of identity theory; and (6) integrate the growing developments in recovery culture with formal treatment
    corecore