849 research outputs found

    Aquatic Nitrate Retention at River Network Scales Across Flow Conditions Determined Using Nested In Situ Sensors

    Get PDF
    Nonpoint pollution sources are strongly influenced by hydrology and are therefore sensitive to climate variability. Some pollutants entering aquatic ecosystems, e.g., nitrate, can be mitigated by in‐stream processes during transport through river networks. Whole river network nitrate retention is difficult to quantify with observations. High frequency, in situ nitrate sensors, deployed in nested locations within a single watershed, can improve estimates of both nonpoint inputs and aquatic retention at river network scales. We deployed a nested sensor network and associated sampling in the urbanizing Oyster River watershed in coastal New Hampshire, USA, to quantify storm event‐scale loading and retention at network scales. An end member analysis used the relative behavior of reactive nitrate and conservative chloride to infer river network fate of nitrate. In the headwater catchments, nitrate and chloride concentrations are both increasingly diluted with increasing storm size. At the mouth of the watershed, chloride is also diluted, but nitrate tended to increase. The end member analysis suggests that this pattern is the result of high retention during small storms (51–78%) that declines to zero during large storms. Although high frequency nitrate sensors did not alter estimates of fluxes over seasonal time periods compared to less frequent grab sampling, they provide the ability to estimate nitrate flux versus storm size at event scales that is critical for such analyses. Nested sensor networks can improve understanding of the controls of both loading and network scale retention, and therefore also improve management of nonpoint source pollution

    Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Get PDF
    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones

    Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream

    Get PDF
    Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3 −) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water concentrations at 30 min intervals over the snowmelt period (March 21–May 13, 2009) at a 40.5 hectare forested watershed at Sleepers River, Vermont. We also collected discrete samples for laboratory absorbance and fluorescence as well as ÎŽ18O–NO3 − isotopes to help interpret the drivers of variable NO3 − and FDOM concentrations measured in situ. In situ data revealed seasonal, event and diurnal patterns associated with hydrological and biogeochemical processes regulating stream NO3 − and FDOM concentrations. An observed decrease in NO3 − concentrations after peak snowmelt runoff and muted response to spring rainfall was consistent with the flushing of a limited supply of NO3 − (mainly from nitrification) from source areas in surficial soils. Stream FDOM concentrations were coupled with flow throughout the study period, suggesting a strong hydrologic control on DOM concentrations in the stream. However, higher FDOM concentrations per unit streamflow after snowmelt likely reflected a greater hydraulic connectivity of the stream to leachable DOM sources in upland soils. We also observed diurnal NO3 − variability of 1–2 ÎŒmol l−1 after snowpack ablation, presumably due to in-stream uptake prior to leafout. A comparison of NO3 − and dissolved organic carbon yields (DOC, measured by FDOM proxy) calculated from weekly discrete samples and in situ data sub-sampled daily resulted in small to moderate differences over the entire study period (−4 to 1% for NO3 − and −3 to −14% for DOC), but resulted in much larger differences for daily yields (−66 to +27% for NO3 − and −88 to +47% for DOC, respectively). Despite challenges inherent in in situ sensor deployments in harsh seasonal conditions, these data provide important insights into processes controlling NO3 − and FDOM in streams, and will be critical for evaluating the effects of climate change on snowmelt delivery to downstream ecosystems

    NITROGEN CYCLING IN A FOREST STREAM DETERMINED BY A 15N TRACER ADDITION

    Get PDF
    Nitrogen uptake and cycling was examined using a six‐week tracer addition of 15N‐labeled ammonium in early spring in Walker Branch, a first‐order deciduous forest stream in eastern Tennessee. Prior to the 15N addition, standing stocks of N were determined for the major biomass compartments. During and after the addition, 15N was measured in water and in dominant biomass compartments upstream and at several locations downstream. Residence time of ammonium in stream water (5–6 min) and ammonium uptake lengths (23–27 m) were short and relatively constant during the addition. Uptake rates of NH4 were more variable, ranging from 22 to 37 ÎŒg N·m−2·min−1 and varying directly with changes in streamwater ammonium concentration (2.7–6.7 ÎŒg/L). The highest rates of ammonium uptake per unit area were by the liverwort Porella pinnata, decomposing leaves, and fine benthic organic matter (FBOM), although epilithon had the highest N uptake per unit biomass N. Nitrification rates and nitrate uptake lengths and rates were determined by fitting a nitrification/nitrate uptake model to the longitudinal profiles of 15N‐NO3 flux. Nitrification was an important sink for ammonium in stream water, accounting for 19% of the total ammonium uptake rate. Nitrate production via coupled regeneration/nitrification of organic N was about one‐half as large as nitrification of streamwater ammonium. Nitrate uptake lengths were longer and more variable than those for ammonium, ranging from 101 m to infinity. Nitrate uptake rate varied from 0 to 29 ÎŒg·m−2·min−1 and was ∌1.6 times greater than assimilatory ammonium uptake rate early in the tracer addition. A sixfold decline in instream gross primary production rate resulting from a sharp decline in light level with leaf emergence had little effect on ammonium uptake rate but reduced nitrate uptake rate by nearly 70%. At the end of the addition, 64–79% of added 15N was accounted for, either in biomass within the 125‐m stream reach (33–48%) or as export of 15N‐NH4 (4%), 15N‐NO3 (23%), and fine particulate organic matter (4%) from the reach. Much of the 15N not accounted for was probably lost downstream as transport of particulate organic N during a storm midway through the experiment or as dissolved organic N produced within the reach. Turnover rates of a large portion of the 15N taken up by biomass compartments were high (0.04–0.08 per day), although a substantial portion of the 15N in Porella (34%), FBOM (21%), and decomposing wood (17%) at the end of the addition was retained 75 d later, indicating relatively long‐term retention of some N taken up from water. In total, our results showed that ammonium retention and nitrification rates were high in Walker Branch, and that the downstream loss of N was primarily as nitrate and was controlled largely by nitrification, assimilatory demand for N, and availability of ammonium to meet that demand. Our results are consistent with recent 15N tracer experiments in N‐deficient forest soils that showed high rates of nitrification and the importance of nitrate uptake in regulating losses of N. Together these studies demonstrate the importance of 15N tracer experiments for improving our understanding of the complex processes controlling N cycling and loss in ecosystems

    Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15N tracer addition

    Get PDF
    Trophic relationships were examined using natural-abundance 13C and 15N analyses and a 15N-tracer addition experiment in Walker Branch, a 1st-order forested stream in eastern Tennessee. In the 15N-tracer addition experiment, we added 15NH4, to stream water over a 6-wk period In early spring, and measured 15N:14N ratios in different taxa and biomass compartments over distance and time. Samples collected from a station upstream from the 15N addition provided data on natural-abundance 13C:12C and 15N:14N ratios. The natural-abundance 15N analysis proved to be of limited value in identifying food resources of macroinvertebrates because 15N values were not greatly different among food resources. In general, the natural-abundance stable isotope approach was most useful for determining whether epilithon or detritus were important food resources for organisms that may use both (e.g., the snail Elimia clavaeformis), and to provide corroborative evidence of food resources of taxa for which the 15N tracer results were not definitive. The 15N tracer results showed that the mayflies Stenonema spp. and Baetis spp. assimilated primarily epilithon, although Baetis appeared to assimilate a portion of the epilithon (e.g., algal cells) with more rapid N turnover than the bulk pool sampled. Although Elimia did not reach isotopic equilibrium during the tracer experiment, application of a N-turnover model to the field data suggested that it assimilated a combination of epilithon and detritus. The amphipod Gammarus minus appeared to depend mostly on fine benthic organic matter (FBOM), and the coleopteran Anchytarsus bicolor on epixylon. The caddisfly Diplectrona modesta appeared to assimilate primarily a fast N-turnover portion of the FBOM pool, and Simuliidae a fast N- turnover component of the suspended particulate organic matter pool rather than the bulk pool sampled. Together, the natural-abundance stable C and N isotope analyses and the experimental 15N tracer approach proved to be very useful tools for identifying food resources in this stream ecosystem

    Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    Get PDF
    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly equally to seasonal and stream-size related variations in the percentage of the stream nitrate flux removed in each watershed

    Dissolved organic carbon uptake in streams: A review and assessment of reach‐scale measurements

    Get PDF
    Quantifying the role that freshwater ecosystems play in the global carbon cycle requires accurate measurement and scaling of dissolved organic carbon (DOC) removal in river networks. We reviewed reach‐scale measurements of DOC uptake from experimental additions of simple organic compounds or leachates to inform development of aquatic DOC models that operate at the river network, regional, or continental scale. Median DOC uptake velocity (vf) across all measurements was 2.28 mm min−1. Measurements using simple compound additions resulted in faster vf (2.94 mm min−1) than additions of leachates (1.11 mm min−1). We also reviewed published data of DOC bioavailability for ambient stream water and leaf leachate DOC from laboratory experiments. We used these data to calculate and apply a correction factor to leaf leachate uptake velocity to estimate ambient stream water DOC uptake rates at the reach scale. Using this approach, we estimated a median ambient stream DOC vf of 0.26 mm min−1. Applying these DOC vf values (0.26, 1.11, 2.28, and 2.94 mm min−1) in a river network inverse model in seven watersheds revealed that our estimated ambient DOC vf value is plausible at the network scale and 27 to 45% of DOC input was removed. Applying the median measured simple compound or leachate vf in whole river networks would require unjustifiably high terrestrial DOC inputs to match observed DOC concentrations at the basin mouth. To improve the understanding and importance of DOC uptake in fluvial systems, we recommend using a multiscale approach coupling laboratory assays, with reach‐scale measurements, and modeling

    A longer vernal window: The role of winter coldness and snowpack in driving spring thresholds and lags

    Get PDF
    Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire, USA, that concurrently monitored climate, snow, soils, and streams over a three-year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero-length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter-to-spring transition and throughout the rest of the year

    Can uptake length in strams be determined by nutrient addition experiments? Results from an interbiome comparison study

    Get PDF
    Nutrient uptake length is an important parnmeter tor quantifying nutrient cycling in streams. Although nutrient tracer additions are the preierred method for measuring uptake length under ambient nutrient concentrations, short-term nutrient addition experiments have more irequently been used to estimate uptake length in streams. Theoretical analysis of the relationship between uptake length determined by nutrient addition experiments (Sw\u27) and uptake length determined by tracer additions (Sw)predicted that Sw\u27 should be consistently longer than 5, , and that the overestimate of uptake length by Sw( should be related to the level of nutrient addition above ambient concentrations and the degree of nutrient limitation. To test these predictions, we used data irom an interbiorne study of NH,- uptake length in which 15NH,- tracer and short-term NH,-a ddition experiments were performed in 10 streams using a uniform experimental approach. The experimental results largely contirmed the theoretical predictions: sw\u27 was consistently longer than Sw and Sw\u27:Sw ratios were directly related to the level of NH,- addition and to indicatvrs of N limitation. The experimentally derived Sw\u27:Sw, ratios were used with the theoretical results to infer the N limitation status of each stream. Together, the theoretical and experimental results showed the tracer experiments should be used whenever possible to determine nutrient uptake length in streams. Nutrient addition experiments may be useful for comparing uptake lengths between different streams or cliiferent times in the same stream. however, provided that nutrient additions are kept as low as possible and of similar miagnitude
    • 

    corecore