761 research outputs found

    Integration of gene expression, clinical, and epidemiologic data to characterize Chronic Fatigue Syndrome

    Get PDF
    BACKGROUND: Chronic fatigue syndrome (CFS) has no diagnostic clinical signs or diagnostic laboratory abnormalities and it is unclear if it represents a single illness. The CFS research case definition recommends stratifying subjects by co-morbid conditions, fatigue level and duration, or functional impairment. But to date, this analysis approach has not yielded any further insight into CFS pathogenesis. This study used the integration of peripheral blood gene expression results with epidemiologic and clinical data to determine whether CFS is a single or heterogeneous illness. RESULTS: CFS subjects were grouped by several clinical and epidemiological variables thought to be important in defining the illness. Statistical tests and cluster analysis were used to distinguish CFS subjects and identify differentially expressed genes. These genes were identified only when CFS subjects were grouped according to illness onset and the majority of genes were involved in pathways of purine and pyrimidine metabolism, glycolysis, oxidative phosphorylation, and glucose metabolism. CONCLUSION: These results provide a physiologic basis that suggests CFS is a heterogeneous illness. The differentially expressed genes imply fundamental metabolic perturbations that will be further investigated and illustrates the power of microarray technology for furthering our understanding CFS

    Exercise responsive genes measured in peripheral blood of women with Chronic Fatigue Syndrome and matched control subjects

    Get PDF
    BACKGROUND: Chronic fatigue syndrome (CFS) is defined by debilitating fatigue that is exacerbated by physical or mental exertion. To search for markers of CFS-associated post-exertional fatigue, we measured peripheral blood gene expression profiles of women with CFS and matched controls before and after exercise challenge. RESULTS: Women with CFS and healthy, age-matched, sedentary controls were exercised on a stationary bicycle at 70% of their predicted maximum workload. Blood was obtained before and after the challenge, total RNA was extracted from mononuclear cells, and signal intensity of the labeled cDNA hybridized to a 3800-gene oligonucleotide microarray was measured. We identified differences in gene expression among and between subject groups before and after exercise challenge and evaluated differences in terms of Gene Ontology categories. Exercise-responsive genes differed between CFS patients and controls. These were in genes classified in chromatin and nucleosome assembly, cytoplasmic vesicles, membrane transport, and G protein-coupled receptor ontologies. Differences in ion transport and ion channel activity were evident at baseline and were exaggerated after exercise, as evidenced by greater numbers of differentially expressed genes in these molecular functions. CONCLUSION: These results highlight the potential use of an exercise challenge combined with microarray gene expression analysis in identifying gene ontologies associated with CFS

    Application of Modified Shell Vial Culture Procedure for Arbovirus Detection

    Get PDF
    The isolation of arboviruses from patient's low titer sera can be difficult. Here we compared the detection efficiency of Dengue (DEN), Yellow Fever (YF), Saint Louis Encephalitis (SLE), West Nile (WN), Ilheus (ILH), Group C (GC), Oropouche (ORO), Mayaro (MAY) and Venezuela Encephalitis Equine (VEE) viruses using a Modified Shell Vial Culture (MSVC) protocol to a Standard Cell Culture (SCC) protocol. First the MSVC and SCC protocols were compared using five dilutions for each of the following stock viruses: DEN-1, DEN-2, DEN-3, DEN-4, YF, SLE, WN, ILH, GC, ORO, MAY and VEE. Next, patients' original sera from which viruses (DEN-1, DEN-2, DEN-3, YF, GC, ORO, MAY and VEE) had been previously isolated were compare by the two methods using five sera dilutions. In addition, seven sera that were positive for DEN-3 by RT-PCR and negative by SCC were processed by MSVC. The MSVC protocol was consistently 1-2 logs higher virus dilution more sensitive for virus detection than the SCC protocol for all stock Flaviviruses tested (DEN-1, DEN-2, DEN-3, DEN-4, YF, SLE, WN and ILH). MSVC was equal to or one log more sensitive for virus detection than SCC for the stock Bunyaviruses (GC and ORO). For the stock Alphavirus MAY, MSVC was equally or one log more sensitive for virus detection than SCC, while for VEE SCC was equally or one log more sensitive for virus detection than MSVC. MSVC was consistently one to two sera dilutions more sensitive than SCC for the detection of Flaviviruses from patients' sera. Both methods were approximately equally sensitive for the detection of Bunyaviruses from patients' sera and equal or one dilution less sensitive for the detection of Alphaviruses from patients' sera. Additionally, MSVC detected DEN virus in five of seven DEN-3 RT-PCR positive, SCC negative patients' sera

    A molecular basis of analgesic tolerance to cannabinoids

    Get PDF
    Clinical usage of cannabinoids in chronic pain states is limited by their central side effects and the pharmacodynamic tolerance that sets in after repeated dosage. Analgesic tolerance to cannabinoids in vivo could be caused by agonist-induced downregulation and intracellular trafficking of cannabinoid receptors, but little is known about the molecular mechanisms involved. We show here that the type 1 cannabinoid receptor (CB1) interacts physically with G-protein-associated sorting protein 1 (GASP1), a protein that sorts receptors in lysosomal compartments destined for degradation. CB1 - GASP1 interaction was observed to be required for agonist-induced downregulation of CB1 in spinal neurons ex vivo as well as in vivo. Importantly, uncoupling CB1 from GASP1 in mice in vivo abrogated tolerance toward cannabinoid-induced analgesia. These results suggest that GASP1 is a key regulator of the fate of CB1 after agonist exposure in the nervous system and critically determines analgesic tolerance to cannabinoids

    Effects of wind energy development on nesting ecology of Greater Prairie-Chickens in fragmented grasslands

    Get PDF
    Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for development of renewable energy may overlap with important habitats of declining populations of grassland birds. Greater Prairie-Chickens (Tympanuchus cupido) are an obligate grassland bird species predicted to respond negatively to energy development. We used a modified before–after control–impact design to test for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We located 59 and 185 nests before and after development, respectively, of a 201 MW wind energy facility in Greater Prairie-Chicken nesting habitat and assessed nest site selection and nest survival relative to proximity to wind energy infrastructure and habitat conditions. Proximity to turbines did not negatively affect nest site selection (β = 0.03, 95% CI = −1.2–1.3) or nest survival (β = −0.3, 95% CI = −0.6–0.1). Instead, nest site selection and survival were strongly related to vegetative cover and other local conditions determined by management for cattle production. Integration of our project results with previous reports of behavioral avoidance of oil and gas facilities by other species of prairie grouse suggests new avenues for research to mitigate impacts of energy development

    Identification of Phosphoglycerate Kinase 1 (PGK1) as a reference gene for quantitative gene expression measurements in human blood RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood is a convenient sample and increasingly used for quantitative gene expression measurements with a variety of diseases including chronic fatigue syndrome (CFS). Quantitative gene expression measurements require normalization of target genes to reference genes that are stable and independent from variables being tested in the experiment. Because there are no genes that are useful for all situations, reference gene selection is an essential step to any quantitative reverse transcription-PCR protocol. Many publications have described appropriate genes for a wide variety of tissues and experimental conditions, however, reference genes that may be suitable for the analysis of CFS, or human blood RNA derived from whole blood as well as isolated peripheral blood mononuclear cells (PBMCs), have not been described.</p> <p>Findings</p> <p>Literature review and analyses of our unpublished microarray data were used to narrow down the pool of candidate reference genes to six. We assayed whole blood RNA from Tempus tubes and cell preparation tube (CPT)-collected PBMC RNA from 46 subjects, and used the geNorm and NormFinder algorithms to select the most stable reference genes. <it>Phosphoglycerate kinase 1 (PGK1) </it>was one of the optimal normalization genes for both whole blood and PBMC RNA, however, additional genes differed for the two sample types; <it>Ribosomal protein large, P0 (RPLP0</it>) for PBMC RNA and <it>Peptidylprolyl isomerase B </it>(<it>PPIB) </it>for whole blood RNA. We also show that the use of a single reference gene is sufficient for normalization when the most stable candidates are used.</p> <p>Conclusions</p> <p>We have identified <it>PGK1 </it>as a stable reference gene for use with whole blood RNA and RNA derived from PBMC. When stable genes are selected it is possible to use a single gene for normalization rather than two or three. Optimal normalization will improve the ability of results from PBMC RNA to be compared with those from whole blood RNA and potentially allows comparison of gene expression results from blood RNA collected and processed by different methods with the intention of biomarker discovery. Results of this study should facilitate large-scale molecular epidemiologic studies using blood RNA as the target of quantitative gene expression measurements.</p

    The Critical Project in Schelling, Tillich and Goodchild

    Get PDF
    2 Altizer and Tillich repeat a Cartesian trope that lies at the kernel of modernity: beginnings must be destructive; they ... The Critical Project in Schelling, Tillich, and Goodchild Daniel Whistler Radical Apologetics: Paul Tillich and Radical&nbsp;..

    Intestinal Epithelial Cell–Derived μ-Opioid Signaling Protects against Ischemia Reperfusion Injury through PI3K Signaling

    Get PDF
    Intestinal ischemia has a wide variety of causes, including, but not limited to, atherosclerosis, thrombosis, hypotension, and chronic inflammation. In severe cases, ischemic injury can result in death. μ-Opioid receptor (MOR) signaling has previously been shown to protect against chemically induced colitis, but the cellular origin of this effect remains unknown. Herein, we evaluated the role of intestinal epithelial cell (IEC)–derived MOR signaling in host responses to ischemia/reperfusion-induced injury. Ileal ischemia was accomplished through obstruction of the distal branches of the superior mesenteric artery (60 minutes) and reperfusion for 90 minutes (ischemia-reperfusion). Floxed-MOR mice were crossed to Villin-cre transgenic mice to selectively delete the MOR gene in IECs (MORIEC−/−). Radio-ligand binding assays demonstrated selective loss of MOR signaling in IECs of MORIEC−/− mice. The s.c. administration of the MOR agonist, [D-Arg2, Lys4] dermorphin (1–4) amide (DALDA), 10 minutes before surgery protected against both ischemic and reperfusion phases of intestinal injury, an effect abolished in MORIEC−/− mice. This cytoprotective effect was associated with enterocyte-mediated phosphoinositide 3-kinase (PI3K)/glycogen synthase kinase 3β signaling and decreased apoptosis, as determined by IHC and caspase-3 processing. PI3K blockade with Ly294002 resulted in loss of MOR-mediated cytoprotective function. Together, these data show that IEC-derived μ-opioid signaling uses the PI3K pathway to protect cells against the damaging effect of ischemia-reperfusion. Targeting MOR signaling may represent a novel mean to alleviate intestinal injury and promote the wound-healing response

    A gene signature for post-infectious chronic fatigue syndrome

    Get PDF
    Background: At present, there are no clinically reliable disease markers for chronic fatigue syndrome. DNA chip microarray technology provides a method for examining the differential expression of mRNA from a large number of genes. Our hypothesis was that a gene expression signature, generated by microarray assays, could help identify genes which are dysregulated in patients with post-infectious CFS and so help identify biomarkers for the condition. Methods: Human genome-wide Affymetrix GeneChip arrays (39,000 transcripts derived from 33,000 gene sequences) were used to compare the levels of gene expression in the peripheral blood mononuclear cells of male patients with post-infectious chronic fatigue (n = 8) and male healthy control subjects (n = 7). Results: Patients and healthy subjects differed significantly in the level of expression of 366 genes. Analysis of the differentially expressed genes indicated functional implications in immune modulation, oxidative stress and apoptosis. Prototype biomarkers were identified on the basis of differential levels of gene expression and possible biological significance Conclusion: Differential expression of key genes identified in this study offer an insight into the possible mechanism of chronic fatigue following infection. The representative biomarkers identified in this research appear promising as potential biomarkers for diagnosis and treatment
    • …
    corecore