612 research outputs found

    Extreme alpha-clustering in the 18O nucleus

    Get PDF
    The structure of the 18O nucleus at excitation energies above the alpha decay threshold was studied using 14C+alpha resonance elastic scattering. A number of states with large alpha reduced widths have been observed, indicating that the alpha-cluster degree of freedom plays an important role in this N not equal Z nucleus. However, the alpha-cluster structure of this nucleus is very different from the relatively simple pattern of strong alpha-cluster quasi-rotational bands in the neighboring 16O and 20Ne nuclei. A 0+ state with an alpha reduced width exceeding the single particle limit was identified at an excitation energy of 9.9+/-0.3 MeV. We discuss evidence that states of this kind are common in light nuclei and give possible explanations of this feature.Comment: 4 pages, 2 figures, 1 table. Resubmission with minor changes for clarity, including removal of one figur

    Population of bound excited states in intermediate-energy fragmentation reactions

    Get PDF
    Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a wide range of reaction mechanisms, ranging from direct reactions to statistical processes. We examine this transition by measuring the relative population of excited states in several sd-shell nuclei produced by fragmentation with the number of removed nucleons ranging from two to sixteen. The two-nucleon removal is consistent with a non-dissipative process whereas the removal of more than five nucleons appears to be mainly statistical.Comment: 5 pages, 6 figure

    Spectroscopy of 54^{54}Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes

    Full text link
    Excited states of the N=32N=32 nucleus 54^{54}Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from 55^{55}Ti by a liquid hydrogen target, using the GRETINA γ\gamma-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in 54^{54}Ti for the first time. A comparison of (p,p′)(p,p') results on low-energy octupole states in the neutron-rich Ca and Ti isotopes with the results of Random Phase Approximation calculations demonstrates that the observed systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure

    Spectroscopy of 54^{54}Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes

    Full text link
    Excited states of the N=32N=32 nucleus 54^{54}Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from 55^{55}Ti by a liquid hydrogen target, using the GRETINA γ\gamma-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in 54^{54}Ti for the first time. A comparison of (p,p′)(p,p') results on low-energy octupole states in the neutron-rich Ca and Ti isotopes with the results of Random Phase Approximation calculations demonstrates that the observed systematic behavior of these states is unexpected.Comment: 7 pages, 8 figure

    Octupole strength in the neutron-rich calcium isotopes

    Full text link
    Low-lying excited states of the neutron-rich calcium isotopes 48−52^{48-52}Ca have been studied via γ\gamma-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA γ\gamma-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.Comment: 15 pages, 3 figure

    Shell structure at N=28 near the dripline: spectroscopy of 42^{42}Si, 43^{43}P and 44^{44}S

    Get PDF
    Measurements of the N=28 isotones 42Si, 43P and 44S using one- and two-proton knockout reactions from the radioactive beam nuclei 44S and 46Ar are reported. The knockout reaction cross sections for populating 42Si and 43P and a 184 keV gamma-ray observed in 43P establish that the d_{3/2} and s_{1/2} proton orbits are nearly degenerate in these nuclei and that there is a substantial Z=14 subshell closure separating these two orbits from the d_{5/2} orbit. The increase in the inclusive two-proton knockout cross section from 42Si to 44S demonstrates the importance of the availability of valence protons for determining the cross section. New calculations of the two-proton knockout reactions that include diffractive effects are presented. In addition, it is proposed that a search for the d_{5/2} proton strength in 43P via a higher statistics one-proton knockout experiment could help determine the size of the Z=14 closure.Comment: Phys. Rev. C, in pres
    • …
    corecore