

Core Temperature Responses to Compensable vs. Uncompensable Heat Stress in Young Adults (PSU Heat Project)

Rachel M. Cottle, Zachary S. Lichter, Daniel J. Vecellio, S. Tony Wolf, and W. Larry Kenney, The Pennsylvania State University, University Park, PA

Purpose: With global warming, much attention has been paid to the upper limits of human adaptability. However, the time to reach a generally-accepted core temperature criterion (40.2°C) associated with heat-related illness above (uncompensable heat stress) and just below (compensable heat stress) the upper limits for heat balance remains unclear. Methods: Fortyeight (22 men/26 women; 23 ± 4 y) subjects were exposed to progressive heat stress in an environmental chamber during minimal activity (MinAct, 159±34W) and light ambulation (LightAmb, 260±55W) in warm-humid (WH; ~35°C, >60% RH) and hot-dry (HD; 43-48°C, <25% RH) environments until heat stress became uncompensable. For each condition, we compared heat storage (S) and the change in gastrointestinal temperature (ΔT_{gi}) over time during compensable and uncompensable heat stress. Using the slopes of the T_{gi} response, we estimated the time to reach T_{gi}=40.2°C. Finally, we examined whether individual characteristics or seasonality were associated with the rate of increase in T_{gi}. Results: During compensable heat stress, S was higher in HD than in WH environments (p<0.05) resulting in a greater but more variable ΔT_{gi} (p ≥ 0.06) for both metabolic rates. There were no differences among conditions during uncompensable heat stress (all p>0.05). There was no influence of sex, aerobic fitness, or seasonality, but a larger body size was associated with a greater ΔT_{gi} during LightAmb in WH (p=0.003). Conclusion: Sustained light activity *without intervention* in uncompensable thermal environments may result in a T_c of 40.2°C (from a 37°C baseline) in 3-7 hours even in young adults vs. several days under compensable heat stress.

Supported by NIA Grant T32 AG049676 and NIH Grant R01 AG067471