1,099 research outputs found

    Non-linear analysis of geomagnetic time series from Etna volcano

    No full text
    International audienceAn intensive nonlinear analysis of geomagnetic time series from the magnetic network on Etna volcano was carried out to investigate the dynamical behavior of magnetic anomalies in volcanic areas. The short-term predictability of the geomagnetic time series was evaluated to establish a possible low-dimensional deterministic dynamics. We estimated the predictive ability of both a nonlinear forecasting technique and a global autoregressive model by comparing the prediction errors. Our findings highlight that volcanomagnetic signals are the result of complex processes that cannot easily be predicted. There is slight evidence based on nonlinear predictions, that the geomagnetic time series are to be governed by many variables, whose time evolution could be better regarded as arising from complex high dimensional processes

    Entanglement and particle correlations of Fermi gases in harmonic traps

    Full text link
    We investigate quantum correlations in the ground state of noninteracting Fermi gases of N particles trapped by an external space-dependent harmonic potential, in any dimension. For this purpose, we compute one-particle correlations, particle fluctuations and bipartite entanglement entropies of extended space regions, and study their large-N scaling behaviors. The half-space von Neumann entanglement entropy is computed for any dimension, obtaining S_HS = c_l N^(d-1)/d ln N, analogously to homogenous systems, with c_l=1/6, 1/(6\sqrt{2}), 1/(6\sqrt{6}) in one, two and three dimensions respectively. We show that the asymptotic large-N relation S_A\approx \pi^2 V_A/3, between the von Neumann entanglement entropy S_A and particle variance V_A of an extended space region A, holds for any subsystem A and in any dimension, analogously to homogeneous noninteracting Fermi gases.Comment: 15 pages, 22 fig

    Fire effects on a Spartina densiflora salt marsh in the floodplain of the Paraná River, Argentina

    Get PDF
    We studied the effects of fire on the structural attributes of a Spartina densiflora salt marsh. The study was carried out from November 1995, spring (N95S) to December 1996, late spring (D96LS). In November 1995, we installed 37 permanent plots. In January 1996, 32 of the plots were accidentally burned (B) and the remaining were not burned (NB). Vegetation on each plot was sampled seasonally, plant species were identified and cover-abundance was estimated. We analyzed and compared seasonal variations in plant species richness, diversity, composition and cover-abundance in burned and non-burned plots. In addition, we analyzed variations in biological types (forbs, graminoids) and types of life cycles (annuals, perennials) in B and NB plots before and after the fire .Principal Component Analysis (PC A) was performed on cover-abundance data for each treatment and sampling date. We included coded dummy variables for each date and treatment as supplementary variables. Results indicated that S. densiflora was the dominant species and Limonium brasiliensis and Dipsacum fullonum were the accompanying species for all treatments and sampling dates. Thirty out of 47 species were present before the fire (N95S). All species in NB plots were also recorded in B plots, and 15 species were exclusively found in B plots. The increases in species richness and diversity observed in B plots after the fire were higher than those in NB plots at the same sampling dates. When comparing the B plots before and after the fire, perennials decreased in cover-abundance and increased in richness, while both attributes increased for annuals; the same pattern was followed by forbs, and graminoids decreased in cover abundance and showed almost similar values of richness. PCA results showed that NB plots were subject to smooth temporal changes in composition and cover abundance, and that B plots underwent greater changes. In D96LS, B and NB plots exhibited a different spatial distribution, which in turn differed from that observed in pre-fire plots in N95S. © 2007 Sociedad de Biología de Chile.Fil:Madanes, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Fischer, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Multicritical behavior of two-dimensional anisotropic antiferromagnets in a magnetic field

    Full text link
    We study the phase diagram and multicritical behavior of anisotropic Heisenberg antiferromagnets on a square lattice in the presence of a magnetic field along the easy axis. We argue that, beside the Ising and XY critical lines, the phase diagram presents a first-order spin-flop line starting from T=0, as in the three-dimensional case. By using field theory we show that the multicritical point where these transition lines meet cannot be O(3) symmetric and occurs at finite temperature. We also predict how the critical temperature of the transition lines varies with the magnetic field and the uniaxial anisotropy in the limit of weak anisotropy.Comment: 21 pages, 8 fig

    Self-consistent models of cuspy triaxial galaxies with dark matter haloes

    Get PDF
    We have constructed realistic, self-consistent models of triaxial elliptical galaxies embedded in triaxial dark matter haloes. We examined three different models for the shape of the dark matter halo: (i) the same axis ratios as the luminous matter (0.7:0.86:1); (ii) a more prolate shape (0.5:0.66:1); (iii) a more oblate shape (0.7:0.93:1). The models were obtained by means of the standard orbital superposition technique introduced by Schwarzschild. Self-consistent solutions were found in each of the three cases. Chaotic orbits were found to be important in all of the models,and their presence was shown to imply a possible slow evolution of the shapes of the haloes. Our results demonstrate for the first time that triaxial dark matter haloes can co-exist with triaxial galaxies.Comment: Latex paper based on the AASTEX format, 20 pages, 11 figures, 2 tables. Paper submitted to Ap

    Static and dynamic structure factors in three-dimensional randomly diluted Ising models

    Full text link
    We consider the three-dimensional randomly diluted Ising model and study the critical behavior of the static and dynamic spin-spin correlation functions (static and dynamic structure factors) at the paramagnetic-ferromagnetic transition in the high-temperature phase. We consider a purely relaxational dynamics without conservation laws, the so-called model A. We present Monte Carlo simulations and perturbative field-theoretical calculations. While the critical behavior of the static structure factor is quite similar to that occurring in pure Ising systems, the dynamic structure factor shows a substantially different critical behavior. In particular, the dynamic correlation function shows a large-time decay rate which is momentum independent. This effect is not related to the presence of the Griffiths tail, which is expected to be irrelevant in the critical limit, but rather to the breaking of translational invariance, which occurs for any sample and which, at the critical point, is not recovered even after the disorder average.Comment: 43 page

    Intelligent learning objects: an agent aproach to create interoperable learning objects

    Get PDF
    Reusing learning material is very important to design learning environments for real-life learning. The reusability of learning objects results from the product of three main features: modularity, discoverability and interoperability. We proposed learning objects built based on agent architectures, called Intelligent Learning Objects (ILO). This paper discusses how the ILO approach can be used to improve the interoperability among learning objects, learning menagement systems (LMS) and pedagogical agents.Education for the 21 st century - impact of ICT and Digital Resources ConferenceRed de Universidades con Carreras en Informática (RedUNCI
    corecore