619 research outputs found
Cross-talk between signaling pathways leading to defense against pathogens and insects
In nature, plants interact with a wide range of organisms, some of which
are harmful (e.g. pathogens, herbivorous insects), while others are beneficial
(e.g. growth-promoting rhizobacteria, mycorrhizal fungi, and predatory
enemies of herbivores). During the evolutionary arms race between plants
and their attackers, primary and secondary immune responses evolved to
recognize common or highly specialized features of microbial pathogens
(Chisholm et al., 2006), resulting in sophisticated mechanisms of defense
Psychophysiological responses underlying unresolved loss and trauma in the Adult Attachment Interview
Unresolved loss/trauma in the context of the Adult Attachment Interview (AAI) has been theorised to result from dissociative processing of fear-related memories and ideas. To examine the plausibility of this model, this study tested hypothesised associations between unresolved loss/trauma and indicators of autonomic nervous system (ANS) reactivity. First-time pregnant women (N = 235) participated in the AAI while heart rate (interbeat interval; IBI) and indicators of parasympathetic reactivity (respiratory sinus arrhythmia; RSA) and sympathetic reactivity (pre-ejection period; PEP, skin conductance level; SCL) were recorded. Using multilevel modelling, ANS reactivity was examined in relation to topic (loss/trauma versus other questions); discussion of actual loss/trauma; classification of unresolved/disorganised; and unresolved responses during the interview. Responses to loss/trauma questions and discussion of loss were associated with respectively larger and smaller IBIs. There was no moderation by unresolved/disorganised status. Unresolved responses about loss were associated with smaller IBIs. Participants classified as unresolved/disorganised showed decreasing PEP and blunted SCL throughout the whole interview. The findings suggest that unresolved speech about loss co-occurs with physiological arousal, although the inconclusive findings regarding parasympathetic and sympathetic nervous system responses fail to clearly support the role of fear
Narrowing the Transmission Gap: A Synthesis of Three Decades of Research on Intergenerational Transmission of Attachment
wenty years ago, meta-analytic results (k = 19) confirmed the association between caregiver attachment representations and child–caregiver attachment (Van IJzendoorn, 1995). A test of caregiver sensitivity as the mechanism behind this intergenerational transmission showed an intriguing “transmission gap.” Since then, the intergenerational transmission of attachment and the transmission gap have been studied extensively, and now extend to diverse populations from all over the globe. Two decades later, the current review revisited the effect sizes of intergenerational transmission, the heterogeneity of the transmission effects, and the size of the transmission gap. Analyses were carried out with a total of 95 samples (total N = 4,819). All analyses confirmed intergenerational transmission of attachment, with larger effect sizes for secure-autonomous transmission (r = .31) than for unresolved transmission (r = .21), albeit with significantly smaller effect sizes than 2 decades earlier (r = .47 and r = .31, respectively). Effect sizes were moderated by risk status of the sample, biological relatedness of child–caregiver dyads, and age of the children. Multivariate moderator analyses showed that unpublished and more recent studies had smaller effect sizes than published and older studies. Path analyses showed that the transmission could not be fully explained by caregiver sensitivity, with more recent studies narrowing but not bridging the “transmission gap.” Implications for attachment theory as well as future directions for research are discussed. (PsycINFO Database Record (c) 2015 APA, all rights reserved)
Somatodendritic secretion in oxytocin neurons is upregulated during the female reproductive cycle
During the female reproductive cycle, hypothalamic oxytocin (OT) neurons undergo sharp changes in excitability. In lactating mammals, bursts of electrical activity of OT neurons result in the release of large amounts of OT in the bloodstream, which causes milk ejection. One hypothesis is that OT neurons regulate their own firing activity and that of nearby OT neurons by somatodendritic release of OT. In this study, we show that OT neuron activity strongly reduces inhibitory synaptic transmission to these neurons. This effect is blocked by antagonists of both adenosine and OT receptors and is mimicked by OT application. Inhibition of soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex formation by tetanus toxin completely blocked the stimulation-induced reduction in inhibitory input, as did the calcium chelator BAPTA. During lactation, the readily releasable pool of secretory vesicles in OT cell bodies was doubled, and calcium currents were upregulated. This resulted in an increased inhibition of GABAergic synaptic transmission by somatodendritic release during lactation compared with the adult virgin stage. These results demonstrate that somatodendritic release is augmented during lactation, which is a novel form of plasticity to change the strength of synaptic transmission
Munc18-1 promotes larger dense-core vesicle docking.
AbstractSecretory vesicles dock at the plasma membrane before Ca2+ triggers their exocytosis. Exocytosis requires the assembly of SNARE complexes formed by the vesicle protein Synaptobrevin and the membrane proteins Syntaxin-1 and SNAP-25. We analyzed the role of Munc18-1, a cytosolic binding partner of Syntaxin-1, in large dense-core vesicle (LDCV) secretion. Calcium-dependent LDCV exocytosis was reduced 10-fold in mouse chromaffin cells lacking Munc18-1, but the kinetic properties of the remaining release, including single fusion events, were not different from controls. Concomitantly, mutant cells displayed a 10-fold reduction in morphologically docked LDCVs. Moreover, acute overexpression of Munc18-1 in bovine chromaffin cells increased the amount of releasable vesicles and accelerated vesicle supply. We conclude that Munc18-1 functions upstream of SNARE complex formation and promotes LDCV docking
Charge transport modulation by a redox supramolecular spin-filtering chiral crystal
The chirality induced spin selectivity (CISS) effect is a fascinating
phenomena correlating molecular structure with electron spin-polarisation in
excited state measurements. Experimental procedures to quantify the
spin-filtering magnitude relies generally on averaging data sets, especially
those from magnetic field dependent conductive-AFM. We investigate the
underlying observed disorder in the IV spectra and the origin of spikes
superimposed. We demonstrate and explain that a dynamic, voltage sweep rate
dependent, phenomena can give rise to complex IV curves for chiral crystals of
coronene bisimide. The redox group, able to capture localized charge states,
acts as an impurity state interfering with a continuum, giving rise to Fano
resonances. We introduce a novel mechanism for the dynamic transport which
might also provide insight into the role of spin-polarization. Crucially,
interference between charge localisation and delocalisation during transport
may be important properties into understanding the CISS phenomena
The Collaboration on Attachment Transmission Synthesis (CATS): A Move to the Level of Individual-Participant-Data Meta-Analysis
Generations of researchers have tested and used attachment theory to understand children’s development. To bring coherence to the expansive set of findings from small-sample studies, the field early on adopted meta-analysis. Nevertheless, gaps in understanding intergenerational transmission of individual differences in attachment continue to exist. We discuss how attachment research has been addressing these challenges by collaborating in formulating questions and pooling data and resources for individual-participant-data meta-analyses. The collaborative model means that sharing hard-won and valuable data goes hand in hand with directly and intensively interacting with a large community of researchers in the initiation phase of research, deliberating on and critically reviewing new hypotheses, and providing access to a large, carefully curated pool of data for testing these hypotheses. Challenges in pooling data are also discussed
Functional outcome is tied to dynamic brain states after mild to moderate traumatic brain injury
The current study set out to investigate the dynamic functional connectome in relation to long-term recovery after mild to moderate traumatic brain injury (TBI). Longitudinal resting-state functional MRI data were collected (at 1 and 3 months postinjury) from a prospectively enrolled cohort consisting of 68 patients with TBI (92% mild TBI) and 20 healthy subjects. Patients underwent a neuropsychological assessment at 3 months postinjury. Outcome was measured using the Glasgow Outcome Scale Extended (GOS-E) at 6 months postinjury. The 57 patients who completed the GOS-E were classified as recovered completely (GOS-E = 8; n = 37) or incompletely (GOS-E < 8; n = 20). Neuropsychological test scores were similar for all groups. Patients with incomplete recovery spent less time in a segregated brain state compared to recovered patients during the second visit. Also, these patients moved less frequently from one meta-state to another as compared to healthy controls and recovered patients. Furthermore, incomplete recovery was associated with disruptions in cyclic state transition patterns, called attractors, during both visits. This study demonstrates that poor long-term functional recovery is associated with alterations in dynamics between brain networks, which becomes more marked as a function of time. These results could be related to psychological processes rather than injury-effects, which is an interesting area for further work. Another natural progression of the current study is to examine whether these dynamic measures can be used to monitor treatment effects
- …