42 research outputs found

    A posteriori error estimates for the virtual element method

    Get PDF
    An a posteriori error analysis for the virtual element method (VEM) applied to general elliptic problems is presented. The resulting error estimator is of residual-type and applies on very general polygonal/polyhedral meshes. The estimator is fully computable as it relies only on quantities available from the VEM solution, namely its degrees of freedom and element-wise polynomial projection. Upper and lower bounds of the error estimator with respect to the VEM approximation error are proven. The error estimator is used to drive adaptive mesh refinement in a number of test problems. Mesh adaptation is particularly simple to implement since elements with consecutive co-planar edges/faces are allowed and, therefore, locally adapted meshes do not require any local mesh post-processing

    Iron and bismuth bound human serum transferrin reveals a partially-opened conformation in the N-lobe

    Get PDF
    Human serum transferrin (hTF) binds Fe(III) tightly but reversibly, and delivers it to cells via a receptor-mediated endocytosis process. The metal-binding and release result in significant conformational changes of the protein. Here, we report the crystal structures of diferric-hTF (Fe N Fe C-hTF) and bismuth-bound hTF (Bi N Fe C-hTF) at 2.8 and 2.4 Å resolutions respectively. Notably, the N-lobes of both structures exhibit unique 'partially-opened' conformations between those of the apo-hTF and holo-hTF. Fe(III) and Bi(III) in the N-lobe coordinate to, besides anions, only two (Tyr95 and Tyr188) and one (Tyr188) tyrosine residues, respectively, in contrast to four residues in the holo-hTF. The C-lobe of both structures are fully closed with iron coordinating to four residues and a carbonate. The structures of hTF observed here represent key conformers captured in the dynamic nature of the transferrin family proteins and provide a structural basis for understanding the mechanism of metal uptake and release in transferrin families. © 2012 Macmillan Publishers Limited. All rights reserved.published_or_final_versio

    A quasi-optimal Crouzeix-Raviart discretization of the Stokes equations

    No full text
    We present a modification of the Crouzeix-Raviart discretization of the Stokes equations in arbitrary dimension which is quasi-optimal, in the sense that the error of the discrete velocity field in a broken H1-norm is proportional to the error of the best approximation to the analytical velocity field. In particular, the velocity error is independent of the pressure error and the discrete velocity field is elementwise solenoidal. Moreover, the sum of the velocity error times the viscosity plus the pressure L2-error is proportional to the sum of the respective best errors. All proportionality constants are bounded in terms of shape regularity and do not depend on the viscosity. For simply connected two-dimensional domains, the velocity and pressure can be computed separately. The modification only affects the right-hand side, aka the load vector. The cost for building the modified load vector is proportional to the cost for building the standard load vector. Some numerical experiments illustrate our theoretical results

    Poincare constants for finite element stars

    No full text

    Quasi-Optimal and Pressure Robust Discretizations of the Stokes Equations by Moment- And Divergence-Preserving Operators

    No full text
    We approximate the solution of the Stokes equations by a new quasi-optimal and pressure robust discontinuous Galerkin discretization of arbitrary order. This means quasi-optimality of the velocity error independent of the pressure. Moreover, the discretization is well-defined for any load which is admissible for the continuous problem and it also provides classical quasi-optimal estimates for the sum of velocity and pressure errors. The key design principle is a careful discretization of the load involving a linear operator, which maps discontinuous Galerkin test functions onto conforming ones thereby preserving the discrete divergence and certain moment conditions on faces and elements
    corecore