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1 Introduction

Parabolic integro-differential optimal control problems are very important for modeling
in science. They have various physical backgrounds in many practical applications such
as population dynamics, visco-elasticity, and heat conduction in materials with memory.
The finite-element approximation of parabolic integro-differential optimal control prob-
lems plays a very important role in the numerical methods for these problems. The finite-
element approximation of an optimal control problem by piecewise constant functions has
been investigated by Falk [1] and Geveci [2]. The discretization for semilinear elliptic opti-
mal control problems is discussed by Arada et al. in [3]. In [4], Brunner and Yan analyzed
the finite-element Galerkin discretization for a class of optimal control problems governed
by integral equations and integro-differential equations. Systematic introductions of the
finite-element method for optimal control problems can be found in [5-10].

The adaptive finite-element approximation is the most important method to boost the
accuracy of the finite-element discretization. It ensures a higher density of nodes in a cer-
tain area of the given domain, where the solution is discontinuous or more difficult to
approximate, using an a posteriori error indicator. A posteriori error estimates are com-
putable quantities in terms of the discrete solution and measure the actual discrete errors
without the knowledge of exact solutions. They are essential in designing algorithms for
a mesh which equidistribute the computational effort and optimize the computation. The
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literature for this is huge. Some techniques directly relevant to our work can be found in
[11, 12]. Recently, in [13-16], we derived a priori error estimates and superconvergence for
linear quadratic optimal control problems using mixed finite-element methods. A posteri-
ori error estimates of mixed finite-element methods for general semilinear optimal control
problems were addressed in [17].

In this paper, we adopt the standard notation W”#(Q2) for Sobolev spaces on 2 with a

norm || - ||,n, given by ||V||fn,p = Z\a\fm ||D"‘V||1;},(Q), a semi-norm | - |,,, given by |v|ﬁ,yp =
>l ||Dav||§p(m. We set W;"(Q) = {v € W™P(Q) : v|sq = 0}. For p = 2, we denote
H™(Q) = Wm(Q), H'(2) = W (), and || -l = I - llmas I| - | = || - llo,2- We denote by

L*(0, T; W™?(2)) the Banach space of all L* integrable functions from J into W™ (Q2) with
norm |v||zsgwme ) = (fOT IVIFympq) dt)% for s € [1,00), and the standard modification for
s = 00. The details can be found in [18].

The problems that we are interested in are the following nonlinear parabolic integro-
differential optimal control problems:

i /T Ly =yol? + Ly ) e 1D
wwek | Jy \ 2ol F ol '

subject to the state equations

Ve — diV(AVy(x, t)) - Atdiv(w(t, T)Vy(x, r)) dt +¢(y)=f+Bu, xe€Qte], (12)

y(x,t)=0, x€dQte], (1.3)

y(x, 0) = J’o(x)» x €L, (14)

where the bounded open set & C R? is a 2 regular convex polygon with boundary 3%,
J=(0,T]f € LX), ¥ = ¥(x,£,7) = Yij(%, 1, T)2x2 € C(0, T; LH(2))¥2, yo € H(Q), a is a
positive constant, and B is a continuous linear operator from K to L?(2). For any R > 0 the
function ¢(-) € W**®(-R,R), ¢'(y) € L*(Q) for any y € L*(J; H}(R2)), and ¢'(y) > 0. We as-
sume the coefficient matrix A(x) = (a;;(x))2x2 € (WL(£2))2*? is a symmetric positive def-
inite matrix and there is a constant ¢ > 0 satisfying for any vector X € R?, X'AX > c||X||é2.
Here, K denotes the admissible set of the control variable, defined by

K = {u(x, ) e L*(;L*(Q)): / ulx,t)dx>0,t . (L5)
Q

The plan of this paper is as follows. In the next section, we construct the optimality
conditions and present the finite-element discretization for nonlinear parabolic integro-
differential optimal control problems. A posteriori error estimates of finite-element solu-
tions for those problems are established in Section 3. Finally, we analyze the conclusion

and future work in Section 4.

2 Finite elements for integro-differential optimal control

We shall now construct the optimality conditions and the finite element discretization of
the nonlinear parabolic integro-differential optimal control problem (1.1)-(1.4). Let V =
HA\(Q), W = L*(Q). Let

a(y,w) = / (AVy)-Vw, Vy,welV, (2.1)
Q
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Yt t;2,w) = (1/f(t, 7)Vz, Vw), VYz,weV, (2.2)

(u,v) = / uv, Vu,veW, (2.3)
Q

Gof) = [ St Vhifiew. (2.4)
Q

Then the nonlinear parabolic integro-differential optimal control problem (1.1)-(1.4) can
be restated as

min /T Lol + ug?) at (2.5)
u@®eK | Jo 2y o +2u '

subject to

t

e, w) + aly, w) + /0 v (6, T5p(0), w)dt + (o), w)

=(f+Bu,w), VYweV,te], (2.6)
¥(x,0) =yo(x), x€Q, (2.7)

where the inner product in L%(2) or L2(2)? is indicated by (-, -).

It is well known (see, e.g., [4]) that the optimal control problem has a solution (y, #), and
that if a pair (y,u) is the solution of equations (2.5)-(2.7), then there is a co-state p € V'
such that the triplet (y, p, u) satisfies the following optimality conditions:

e, w) + aly, w) + /Ot v (6T5y(t),w)dt + (¢(y),w) = (f + Bu,w), VYweV, (2.8)

¥x,0)=yo(x), x€Q, (2.9)

T
~(pe,w) + alg,p) + f V(v tqp(0)dr + (¢ 0pq) =-y0.9), VYgeV, (2.10)

px,T)=0, x€g, (2.11)

T
/ (om +B'p,v— u) dt>0, Vvek, (2.12)
0

where B* is the adjoint operator of B.

Let us consider the finite-element approximation of the optimal control problem
(2.5)-(2.7). Again here we consider only n-simplex elements and conforming finite ele-
ments.

For ease of exposition we will assume that € is a polygon. Let 7" be regular partition
of Q. Associated with 7" is a finite-dimensional subspace V* of C(Q), such that x|, are
polynomials of order m (m >1) Vx € V" and t € T". It is easy to see that V* C V. Let i,
denote the maximum diameter of the element t in 7%, i = max, 7 {#;}. In addition C or
¢ denotes a general positive constant independent of /.

Due to the limited regularity of the optimal control « in general, there will be no advan-
tage in considering higher-order finite element spaces rather than the piecewise constant
space for the control. So, we only consider piecewise constant finite elements for the ap-
proximation of the control, though higher-order finite elements will be used to approxi-
mate the state and the co-state.
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Let Py(r) denote the piecewise constant space over 7. Then we take K = {u € K :
u(x,t)|; € Po(r)}. By the definition of the finite-element subspace, the finite-element dis-
cretization of equations (2.5)-(2.7) is as follows: compute (y;,, ;) € V" x K" such that

i {/T<1|| 12+ 2 ||2)dt} (2.13)
min — — + — U ) .
upek | Jo 2 Vi =0 2 o

nes wh) + a(yn, wi) + / ¥ (¢, 590(1), wi) dt + (¢(On), wi) = (f + Bun, wi), (2.14)
0

yu(x,0) = yox), x€Q, (2.15)

where w;, € V!, yh € V" is an approximation of y;.

Again, it follows that the optimal control problem (2.13)-(2.15) has a solution (yj, ux),
and that if a pair (y;, u,) is the solution of equations (2.13)-(2.15), then there is a co-state
pn € V" such that triplet (y,, py, uy,) satisfies the following optimality conditions:

One» W) + a(yn, wi) + /0 ¥ (¢, T59(1), wi) dt + (¢(n), wi) = (f + Bup, wi), (2.16)

yu(x,0) = yox), x€Q, (2.17)

T
~(pne wi) + algn pn) + / ¥ (T, 6.qn pu(7)) AT + (' WD an) = O — Yo, qn),  (2.18)

pulx,T)=0, x€Q, (2.19)

(un + B*pp,vis — un) ; = 0, (2.20)

where wy, qj € Vi v, e K.
We now consider the fully discrete finite-element approximation for the semidiscrete
problem. Let At>0,N=T/Ate€Z,andt =i At,i€R. Also, let

i gicl
Hop)-t(nl),  di =t A‘i .

Fori=1,2,...,N, construct the finite-element spaces Vlh € V with the mesh ’Ej (similar
to V). Similarly, construct the finite-element spaces Kf’ € L*(R2) with the mesh 7;1’ (similar
as ;). Let hif denote the maximum diameter of the element 7/ in 7711'. Define mesh functions
7(-) and mesh size functions /. (-) such that () |se(t,_, 1) = T' e (£)lte(t,_y 1) = Hy,- For ease of
exposition, we shall denote 7(¢) and %, (¢t) by v and /., respectively. Then the fully discrete
finite-element approximation of equations (2.13)-(2.15) is as follows: compute (y, u}) €
VI x K, i=1,2,...,N, such that

ANy 4
min {ZAt(EHy’h R §||u;|\2) , (2.21)
i=1

i h
uy €K;

i

t
(diwi) + a(vlywn) + /0 W (6,730, wi) e + (S wi)

= (f(x &) + Buj, wy), (2.22)

VYw,eV%i=12,...,N, yx)=yix), xeQ, (2.23)

Page 4 of 14
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where yﬁ € V" is an approximation of yo.

Now, it follows that the optimal control problem (2.21)-(2.23) has a solution (Y, U),
i=1,2,...,N, and that if a pair (Y7, L[,i), i=1,2,...,N,is the solution of (2.21)-(2.23), then
there is a co-state P! € V!, i = N,...,2,1, such that triplet (Y}, Pi"1, U!) satisfies the fol-

lowing optimality conditions:

t
(Y w) +a(Yiws) + /0 (65 Yi () w) e + ($(Y]), wi)

= (f +BUj, wy), (2.24)
Yw, e V"i=1,2,...,N, Y (x) = yi(x), xe, (2.25)
T
~(d.P}, qn) + a(qn P;") + / v (t,t:qn P (0)) dr + (¢ (Y )P an) (2.26)
t
= (Y -yo,qn), VaneV!i=N,...,2,1, PY(x)=0, xe, (2.27)
(all + B*P}, v, - U,) >0, Vv, eK!,i=12,...,N. (2.28)

Fori=1,2,...,N, let

Yilwyu = (6= 0)Y + (- 6i0)Y,) 1A, (2.29)
Ph|(t,‘_1,t,‘] = ((tl - t)P;:1 + (t - tlfl)PZ)/At) (230)
Unl(ty-1,0 = U, (2.31)

For any function w € C(0,T;L*(Q)), let W, t)leci ) = W 8), W Ol 1h) =
w(x,t;_1). Then the optimality conditions (2.24)-(2.28) can be restated as

t

(Yot wi) + a(Yn, wi) +/ V(6,13 Yi(1), wi) dt + (@(Yn), wn) = (f + BUp, wy),  (2.32)
0

VYw, e V%i=1,2,...,N, Y (x) = yi(x), xe, (2.33)

T
(Prran) + alqu Pr) + f V(o tiqm Po(©)) dr + (/) Bar )

= (Y~ y0,qn), (2.34)
Vgne V'i=N,...,2,1, P, T)=0, x€Q, (2.35)
(aly +B*Py, vy —Uy) =0, Vv,eKli=12,...,N. (2.36)

In the rest of the paper, we shall use some intermediate variables. For any control func-
tion Uj, € K, we first define the state solution (y(U,), p(U})) which satisfies

(L), w) + a(y(U), w) + /0 V(6 (U (), w) d + (B ((U),w)

= (f + BUp, w), (2.37)

YweV, y(Up)(x,0) = yo(x), x€K, (2.38)

T
—(p(Un), q) + a(q, p(Un)) + f v (t,6:q,p(Un) () dr + (¢' (y(Un))p(Un),q)  (2.39)

Page 5 of 14
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= (y(L[h) —yo,q), VgeV, pUp)x,T)=0, xeQ. (2.40)
Now we restate the following well-known estimates in [18].

Lemma 2.1 Let 71, be the Clément type interpolation operator defined in [18]. Then for any
ve HYRQ) and all elements t,

v = #avllzy + he | VO = 79| 2y < Ce D W2y (2.41)
FNTAD
v =Auvll2g < CH> > Vv, (2.42)
Ict’

where [ is the edge of the element.

3 A posteriori error estimates
In this section we will obtain a posteriori error estimates in L>(/; H(2)) and L(J; L*(R2))
for the coupled state and control approximation. Firstly, we estimate the error ||y(U)) —

Yill 2 gm0 ()

Theorem 3.1 Let (y(Uy), p(Uy)) and (Y, Py) be the solutions of equations (2.37)-(2.39) and
equations (2.32)-(2.34), respectively. Then

19W) = Vi 12 1) = Cin?, 3.1)
where
72 _/ Z hZ/( f +BU;, — Yy +div(AVYy,)
t 2
+ / div(w(t,r)v?h(z))dz—¢(f/h)> dt,

‘ 2
n%_/o Z h;/[AVf/h-n+/0 ((w(t,t)Vf/h(t))%)dr] dt,

NIQ=2
t 2
nj = hy [Avffh.m ((w(t,r)vi’h(z)).n)dr} dt,
= o [ |

2 212
Ny = ”_f _f||L2(];L2(Q))
’7% = ” Yh - Yh”iz(];Hl(Q))’

nZ = H Yy (x,0) = yo(x) ”iz(sz)’

where l is a face of an element t, hy is the size of face [, [AVyy, - n] is the A-normal derivative
jump over the interior face I, defined by

[AVY), - n]; = (AVYh|‘L'11 —AVY],,|T12) -n

where n is the unit normal vector on | = T} N T? outwards of t}'.
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Proof Let ¢ = y(Uy) — Yy, and let ef be the Clément type interpolator of ¢’ defined in
Lemma 2.1. Note that

T
/ (eU) = Y ) it

/ / yt(Uh Yht eydxdt

/ (((Un) - Yn)(, )) dx——|| Yy, (x,0) — yo(x)||L2 (3.2)

From equation (3.2), we have

T
1
/ (yt(uh) - Yht’ey) dt + 5” Y]’l(xfo) _yO(x)”iZ(Q) = 0. (3'3)
0
By using the assumptions of A and ¢, thus we can obtain the following result:

C”ey “iZ(];Hl(m)
T

T
< / (AV (y(Uy) - Vi), Ve') dt + / (L) - B(Y), &) dt
0 0

T

T
- [ vt - i), V(e - e+ [ (66) - ot - ) ds

T

T

e [ avhw) - ) veydes [ (obwn) -o.)

T T
< [ V0w - 1) V@ -@)der [ (@) - st - )de

T ey 1 )

+/0 (e Up) = Yu, @ — ) dt + 5“ Y5(,0) = 7o) | 12 g
T T

+ fo (AV (y(Uy) - Y2), Ve ) dt + /0 (e((Un) - d(Yn), €)) dt
T

+ fo (e(Un) = Yo, €)) dit. (3.4)

By using equations (2.32), (2.37), and (3.4), we infer that

C”ey ”iz(j'Hl(Q))

/ <f Yiue + div(AVY,) + / tdiv(i//(t,t)Vf/h(r)) dt —¢(?h)>

(e?)

/ (Avi/h s /O (W6 OV @) ) df)(ey_e;) dt

0 Jroq-o

/(; /(AVIA/;! n+ /Ot((l/f(t,r)vf’h(z)) 1) dl’) (¢ - &) at

by}


http://www.advancesindifferenceequations.com/content/2014/1/15

Lu Advances in Difference Equations 2014, 2014:15
http://www.advancesindifferenceequations.com/content/2014/1/15

T

T A A
+/ (AV(Yh—Yh),Vey)dt+/ (p(Yn) — ¢(Yn), €) dt
0 0

T
R 1
o [ -Tedes S0 300y

1 2
=h+h+L+1+15+1+ 3 | Y (x, 0) —yo(x)||L2(m (3.5)

Let us bound each of the terms on the right-hand side of equation (3.5). By Lemma 2.1 we

have

T R . ¢ A R
= — Yy +div(A di : dr —
5L ./o Igh/;(f Yine + div( VYh)+f0 1v(1p(t ‘L’)VYh('()) T ¢(Yh)>
X (e” - ef) dt
T t 2
<C /0 Zhhﬁ / <f_yht+div(Avf/h)+ /0 div(w(t,z)vifh(r))dr—¢(?h)) dt

+ca/ > K? /|ey e)|* dt

TeTh

T . . t R . 2
§C/0 rghh3£<f—yht+div(Avyh)+A diV(d/(t,t)VYh(t))dr—¢(Yh)) dt
+C8 ||ey||jzu;H1(Q)). (3.6)
Next, using Lemma 2.1, we get
T t
I, = AVY. - ,T)VY; -n)drt |(¢ -€))d
\ /0 m%;g/l( ) n+/0((1ﬁ(t V() -n) T>( ) de
5(:/ > h;/[AV?h-n+ft((w(t )Vt } dt
0 naq-o 0
+C8 2| |e—e| dt+Cs V(e —e)| dt
/ Xk fler-af [x X [Ive-ar
A t A 2
<C Z h;/[AVYh-n+f ((Iﬂ(t,t)VYh(t))-n)d‘L’} dt
0 Jnag-o 0
(3.7)

+C8 ”ey ||L2(];H1(Q))’

and
I3 = /(AVY;, n+ /t((w(t,r)vffh(f)) n) dt) (ey _e;) dt
0 1coQ
¢ 2
=< C/O lg;}h[ ./l(AVYh -n +‘/0 ((I//(t,T)VYh(r)) I’l) d‘[) dr

+cs/ Zh f|ey o dt+C8/ Z/W &) dt

Page 8 of 14
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2

r t
< C/O Z hy /I<AV1A/;, n +/0 ((l/f(t,t)Vf/h(f)) 1) dr) dt

J{at:19]

2
+ C8[1 €| 201 (3.8)
For the right-hand terms I;-Is of equation (3.5), the Schwarz inequality implies
T A
I = / (AV(Y, - Y3), Ve dt
0
s 2
<ClY,- Yh”%Z(];Hl(Q)) +C38 ”ey”LZ(];Hl(Q))r (39)
T
= [ (o) - o)) de
0
T ~ A
- [ @ -t.e)a
0
S 2
<C|Yn- Yh”iZU;HI(Q)) +C9 ”eyHLZU;Hl(Q))’ (310)
and
T A
I - / (F-F.e)dt
0
5 2
= C”f _f”lz)(];LZ(Q)) + C8 ”e)/ HLZ(];HI(Q))' (311)
Let § be small enough, and add inequalities (3.5)-(3.11) to obtain
) 6
i=1
This completes the proof. O

Analogously to the proof of Theorem 3.1, we can obtain the following estimates.

Theorem 3.2 Let (y(Uy,), p(Uy)) and (Yy, Py) be the solutions of equations (2.37)-(2.39) and
equations (2.32)-(2.34), respectively. Then

11
i=1
where
T
W
0 teTh

T 2
X /(Pht + diV(A*Vf’h) + / div(w*(r,t)Vf)h(t)) dr + Y, - 90— ¢/()~/h)l~’h) dt,
T t

2

T T
;752;:/0 Z hl/ll:A*VIN)h-n+/t (w*(r,t)Vf’h(r)) ~ndr] dt,

NIQ=2

Page 9 of 14
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2

T T
;73 :/O Zh,/l[A*Vf)h-n+/t (w*(r,t)VIN’h(r)) ~ndr] dt,

lcoa
My = 1P = Pall 1

77%0 =Yy - Yh”iZ(];Hl(Q))r

where 11-n¢ are defined in Theorem 3.1, [ is a face of an element t, [A*V Dy, - n] is the A-
normal derivative jump over the interior face l, defined by

[A*VDPy - n], = (A*VPy|p — AV 2) -,
where n is the unit normal vector on | = T} N T} outwards of t}.
For given u € K, let M be the inverse operator of the state equation (2.8), such that

y(u) = MBu is the solution of the state equation (2.8). Similarly, for given U}, € K" v, (U, =
M, BUy, is the solution of the discrete state equation (2.32). Let

1 o
S(u) = §||MBM—J’0||2 + Ellullz,

1 o
Si(U) = S| MyBU, —yoll* + Enuhn?

It is clear that S and S, are well defined and continuous on K and K”. Also the functional

Sy can be naturally extended on K. Then equations (2.5) and (2.21) can be represented as

ngwwh (3.14)
min {S,(Ux)}. (3.15)
Uyekh

It can be shown that

(S'w),v) = (au + B*p,v),
(S/(uh)r V) = (O[Uh + B*p(uh)¢ V):
(S,(Un),v) = (aly + B*Py,v),
where p(U},) is the solution of equations (2.37)-(2.39).
In many applications, S(-) is uniform convex near the solution u (see, e.g., [19]). The
convexity of S(-) is closely related to the second-order sufficient conditions of the control

problems, which are assumed in many studies on numerical methods of the problems. If

S() is uniformly convex, then there is a ¢ > 0, such that

T
/ (S'60) - S WU, =1y = el — Uy (3.16)
0

where u and U, are the solutions of equations (3.14) and (3.15), respectively. We will as-

sume the above inequality throughout this paper.


http://www.advancesindifferenceequations.com/content/2014/1/15

Lu Advances in Difference Equations 2014, 2014:15
http://www.advancesindifferenceequations.com/content/2014/1/15

In order to have sharp a posteriori error estimates, we divide €2 into some subsets:

Q7 ={xeQ: (B*Py)(xt;) < —al}},
Qi ={xeQ:(BPy)(x, 1) > —all}, U}, = 0},
Qf = {x eqQ: (B*f)h)(x,t,-) > —aLI,i,U,i > 0}.
Then, itis clear that the three subsets do not intersect,and 2 = Q7 UQ;UQ/,i=1,2,...,N.

Let p(U,) be the solution of equations (2.37)-(2.39); we establish the following error
estimate, which can be proved similarly to the proofs given in [10].

Theorem 3.3 Let u and U, be the solutions of equations (2.5) and (2.36), respectively.
Then

2 2 B 2
”u - Uh”LZ(/;LZ(Q)) = C(’hz + ||Ph _p(uh)”LZ(];Hl(Q)))r (3'17)
where
7=y / 1By + ally | dx .
i=1 Y1 Y
Proof 1t follows from the inequality (3.16) that

C”M - uh ”%Z(I;LZ(Q))

T
< / (S )yt Uy) — (S'(U) = Uy) dt
0
T
- S (Uy),u—-Uy,)d
< fo (S' (W), u - Uy) dt
T

T
= / (Sp(Un), Uy, — u) dt + / (Si(Uy) = S'(Un), u - Uy) dt. (3.18)
0 0

Note that

T N t; »
f (S},(Uh), Uy —u)dt = Zf / (B*Ph + aLIh)(Uh —u)dxdt
0 i=1 Yt Y
+ Zf / (B*Py + ally)(Uy — u)dxdt
=1 Y1V

N t; B
£ /t /Q ) (B*Py + ally)(~u) dxdt. (3.19)
i=1 -1 i

It is easy to see that

J

= = 2
(B*Py + ally)(Uy, — ) dx < / |B*Py, + ally|” dx + 8llu— Upl 72 52y
3 @

= Cn122 + 8”” - Uh”iz(];ﬂ(ﬂ))’ (320)
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Since U, is piecewise constant, Uyl > 0 if s N Q] is not empty. If u|; > 0, there exist
€>0and B € Uy, such that 8 > 0, || Bl o) =1 and (uy, — £B8)|s = 0. For example, one can
always find such a required 8 from one of the shape functions on s. Hence, i;, € K", where
iy = Uy — P as x € s and otherwise # = Uj,. Then, it follows from equation (2.36) that

f(B*ph + Oluh)ﬁ dx = 8_1 f(B*ﬁh + Oluh) (Uh - (Uh - 8,3)) dx

S S

< 871/(3*13,1 +ally) (U - (U - £B)) dx < 0. (3.21)
Q

Note that on Q, B*Py + al, > B*P, > 0 and from equation (3.20) we have

fsmﬂl‘r

B*f’h+al,[h|,6dx = f

sNQf

(B*i’h + al,[h),B dx < —/ (B*f’h + aLI;,)ﬂ dx

sNQy
< f |B* Py, + ol | d. (3.22)
sNQ;
Let § be the reference element of s, s” = s N QF, and 8° C § be a part mapped from s°. Note

that (/|- |2, /.| - |B are both norms on L?(s). In such a case for the function B fixed
above, it follows from the equivalence of the norm in the finite-dimensional space that

/m;

_ / BBy + ally > dx < CI2 / BBy + ally [ dx
0 0

B*f)h + Oluh‘zdx

2 2
<cw ( [ 5B+ et dx) < ch? ( [ 1mBratns dx)
350 SN
~ 2 ~ 2
<Ch;? < / |B*Pyy + ol dx) <C / |B*Py + ally|” dx, (3.23)
sNQy sNQy

where the constant C can be made independent of 8 since it is always possible to find the

required S from the shape functions on s. Thus

/ (B*Py+ aldy) (U~ w)dx < C | |BPy+ aldy|” dx + 8llu— Unl 0.0,
Qf ’

aof
2 2
< C/ |B*Py + aly|” dx + 81|t = Unll 1o g12(0y)
@
S Can + 6”M - Uh”lz)(];l)(g))- (324')

It follows from the definition of ; that B*P;, + all;, > 0 on £2;. Note that —u < 0, we have

/ (B*Py + ally)(~u) dx < 0. (3.25)
Q;

It is easy to show that

(Sp(Un) = S'(Uy), u - Uy)
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= (B*Py + ally,u— Uy) — (B*p(Up) + el u— Uy)

= (B*(Py - p(Un)),u — Uy)

<C|2, _p(uh)HiZ(I;LZ(Q)) + 8l = Unl 722y

< C[| By = PR p2ggrr ey * N1 = Ul - (3.26)
Therefore, equation (3.17) follows from equations (3.18)-(3.20) and (3.24)-(3.26). O

Hence, we combine Theorems 3.1-3.3 to conclude that

Theorem 3.4 Let (y,p,u) and (Y}, Py, Uy) be the solutions of equations (2.8)-(2.12) and
equations (2.32)-(2.36), respectively. Then

12
i = Un 321200 * 19 = Yall Fagamiqayy *+ 12 = Pill 22y < € D00 (327)
i=1

where 1n1-1m12 are defined in Theorems 3.1-3.3, respectively.

Proof From equations (2.8)-(2.11) and (2.37)-(2.40), we obtain the error equations

(e = ye(Un), w) + ay = y(Ui), w) + /O t v (6w (v - y(Un)(0), w) de

+ (o) - o (y(Un)), w) = (B(u - Uy),w), (3.28)
—(pe — p(Un), q) + alq.p - p(U)) + /tT v (1,69, (p - p(Uy) (1)) dt

+ (¢’ 0p — ¢’ ((UW)pUn), q) = (v - y(Un),q), (3.29)

for all w € V and g € V. Thus it follows from equations (3.28)-(3.29) that

(e =2t w) + aly = y(Ui), w) + /0 t v (67 (y - y(Uy))(x), w) de
+ (@0 (v - y(Un)), w) = (B(u— Up), w), (3.30)
—(pe = pe(Un), q) + alq,p - p(U)) + /tT v (1,69, (p - p(Uy))(1)) dT
+ (¢’ ((U) (p - p(Un)), q) = (¢ (y(Un)) (y(Un) - ), q). (3.31)
By using the stability results in [20, 21], then we obtain
1 = 9 | 2y < Cllit = Unl a2 (3.32)
and
2= PW 2000y = 17 =2 [ 2y = Cllt = Uz (3.33)

Finally, combining Theorems 3.1-3.3 and equations (3.32)-(3.33) leads to equation (3.27).
O
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4 Conclusion and future work

In this paper we discuss the finite-element methods of the nonlinear parabolic integro-
differential optimal control problems (1.1)-(1.4). We have established a posteriori error
estimates for both the state, the co-state, and the control variables. The posteriori error
estimates for those problems by finite-element methods seem to be new.

In our future work, we shall use the mixed finite-element method to deal with nonlinear
parabolic integro-differential optimal control problems. Furthermore, we shall consider
a posteriori error estimates and superconvergence of mixed finite-element solution for
nonlinear parabolic integro-differential optimal control problems.
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