2,009 research outputs found

    A new segment of the trochlear nerve: cadaveric study with application to skull base surgery

    Get PDF
    Objectives The trochlear nerve is important to preserve during approaches to the skull base. Traditionally, this nerve has been divided into cisternal, cavernous, and orbital segments. However, the authors anecdotally observed an additional segment during routine cadaveric dissections. Therefore, they performed this study to better elucidate this anatomy. Design Twenty latex-injected cadaveric sides (10 adult cadavers) were dissected with the aid of an operating microscope. Standard microdissection techniques were used to examine the course of the distal cisternal and precavernous segments of the trochlear nerve. Setting Cadaver laboratory. Main Outcome Measures Measurements were made using a microcaliper. Digital images were made of the dissections. Results The authors identified a previously undescribed segment of the trochlear nerve in all specimens. This part of the nerve coursed between the entrance of the trochlear nerve into the posterior corner of the oculomotor trigone to the posterior wall of the cavernous sinus. This segment of trochlear nerve was, on average, 4 mm in length. Conclusions The authors have identified a new segment of the trochlear nerve not previously described. They propose that this be referred to as the trigonal segment. Knowledge of the microanatomy of the trochlear nerve is useful to skull base surgeons

    Collected world experience about the performance of the snorkel/chimney endovascular technique in the treatment of complex aortic pathologies: The PERICLES registry

    Get PDF
    Objectives: We sought to analyze the collected worldwide experience with use of snorkel/chimney endovascular aneurysm repair (EVAR) for complex abdominal aneurysm treatment. Background: EVAR has largely replaced open surgery worldwide for anatomically suitable aortic aneurysms. Lack of availability of fenestrated and branched devices has encouraged an alternative strategy utilizing parallel or snorkel/chimney grafts (ch-EVAR). Methods: Clinical and radiographic information was retrospectively reviewed and analyzed on 517 patients treated by ch-EVAR from 2008 from 2014 by prearranged defined and documented protocols. Results: A total of 119 patients in US centers and 398 in European centers were treated during the study period. US centers preferentially used Zenith stent-grafts (54.2%) and European centers Endurant stent-grafts (62.2%) for the main body component. Overall 898 chimney grafts (49.2% balloon expandable, 39.6% self-expanding covered stents, and 11.2% balloon expandable bare metal stents) were placed in 692 renal arteries, 156 superior mesenteric arteries (SMA), and 50 celiac arteries. At a mean follow-up of 17.1 months (range: 1-70 months), primary patency was 94%, with secondary patency of 95.3%. Overall survival of patients in this high-risk cohort for open repair at latest follow-up was 79%. Conclusions: This global experience represents the largest series in the ch-EVAR literature and demonstrates comparable outcomes to those in published reports of branched/fenestrated devices, suggesting the appropriateness of broader applicability and the need for continued careful surveillance. These results support ch-EVAR as a valid off-the-shelf and immediately available alternative in the treatment of complex abdominal EVAR and provide impetus for the standardization of these techniques in the future

    Reactions of (-)-sparteine with alkali metal HMDS complexes : conventional meets the unconventional

    Get PDF
    Conventional (-)-sparteine adducts of lithium and sodium 1,1,1,3,3,3-hexamethyldisilazide (HMDS) were prepared and characterised, along with an unexpected and unconventional hydroxyl-incorporated sodium sodiate, [(-)-sparteine·Na(-HMDS)Na·(-)-sparteine]+[Na4(-HMDS)4(OH)]--the complex anion of which is the first inverse crown ether anion

    Generic Fibrational Induction

    Full text link
    This paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs' elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, a sound induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of a particular syntactic form. We establish the soundness of our generic induction rule by reducing induction to iteration. We then show how our generic induction rule can be instantiated to give induction rules for the data types of rose trees, finite hereditary sets, and hyperfunctions. The first of these lies outside the scope of Hermida and Jacobs' work because it is not polynomial, and as far as we are aware, no induction rules have been known to exist for the second and third in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set.Comment: For Special Issue from CSL 201

    The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes

    Get PDF
    A hallmark of macroautophagy is the covalent lipidation of LC3 and insertion into the double-membrane phagophore, which is driven by the ATG16L1/ATG5-ATG12 complex. In contrast, non-canonical autophagy is a pathway through which LC3 is lipidated and inserted into single membranes, particularly endolysosomal vacuoles during cell engulfment events such as LC3-associated phagocytosis. Factors controlling the targeting of ATG16L1 to phagophores are dispensable for non-canonical autophagy, for which the mechanism of ATG16L1 recruitment is unknown. Here we show that the WD repeat containing C-terminal domain (WD40 CTD) of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Using this strategy to inhibit non-canonical autophagy specifically we show a reduction of MHC class II antigen presentation in dendritic cells from mice lacking the WD40 CTD. Further, we demonstrate activation of non-canonical autophagy dependent on the WD40 CTD during influenza A virus infection. This suggests dependence on WD40 CTD distinguishes between macroautophagy and non-canonical use of autophagy machinery.This research was supported by the Cambridge NIHR BRC Cell Phenotyping Hub. This work was funded by Cancer Research UK (C47718/A16337, O.F.), the Medical Research Council (RG89611, R.B.) and the BBSRC Institute Strategic Programme Gut Health and Food Safety (BB/J004529/1)

    2-Oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase

    Get PDF
    Compared to normal differentiated cells, cancer cells have altered metabolic regulation to support biosynthesis and the expression of the M2 isozyme of pyruvate kinase (PKM2) plays an important role in this anabolic metabolism. While the M1 isoform is a highly active enzyme, the alternatively spliced M2 variant is considerably less active and expressed in tumors. While the exact mechanism by which decreased pyruvate kinase activity contributes to anabolic metabolism remains unclear, it is hypothesized that activation of PKM2 to levels seen with PKM1 may promote a metabolic program that is not conducive to cell proliferation. Here we report the third chemotype in a series of PKM2 activators based on the 2-oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamide scaffold. The synthesis, structure activity relationships, selectivity and notable physiochemical properties are described.National Human Genome Research Institute (U.S.) (Molecular Libraries Initiative of the NIH Roadmap for Medical Research
    corecore