302 research outputs found
First observations and magnitude measurement of Starlink's Darksat
Measure the Sloan g' magnitudes of the Starlink's STARLINK-1130 (Darksat) and
1113 LEO communication satellites and determine the effectiveness of the
Darksat darkening treatment at 475.4\,nm. Two observations of the Starlink's
Darksat LEO communication satellite were conducted on 2020/02/08 and 2020/03/06
using a Sloan r' and g' filter respectively. While a second satellite,
STARLINK-1113 was observed on 2020/03/06 using a Sloan g' filter. The initial
observation on 2020/02/08 was a test observation when Darksat was still
manoeuvring to its nominal orbit and orientation. Based on the successful test
observation, the first main observation was conducted on 2020/03/06 along with
an observation of the second Starlink satellite. The calibration, image
processing and analysis of the Darksat Sloan g' image gives an estimated Sloan
g' magnitude of at a range of 976.50\,km. For STARLINK-1113 an
estimated Sloan g' magnitude of at a range of 941.62\,km was
found. When scaled to a range of 550\,km and corrected for the solar and
observer phase angles, a reduction by a factor of two is seen in the reflected
solar flux between Darksat and STARLINK-1113. The data and results presented in
this work, show that the special darkening coating used by Starlink for Darksat
has darkened the Sloan g' magnitude by \,mag, when the range is
equal to a nominal orbital height (550\,km). This result will serve members of
the astronomical community modelling the satellite mega-constellations, to
ascertain their true impact on both the amateur and professional astronomical
communities. Concurrent and further observations are planned to cover the full
optical and NIR spectrum, from an ensemble of instruments, telescopes and
observatories.Comment: Accepted for publication in A&A Letters. 5 pages, 2 figures and 4
table
New results on GP Com
We present high resolution optical and UV spectra of the 46 min orbital
period, helium binary, GP Com. Our data contains simultaneous photometric
correction which confirms the flaring behaviour observed in previous optical
and UV data. In this system all lines show a triple peaked structure where the
outer two peaks are associated with the accretion disc around the compact
object. The main aim of this paper is to constrain the origin of the central
peak, also called ``central spike''. We find that the central spike contributes
to the flare spectra indicating that its origin is probably the compact object.
We also detect that the central spike moves with orbital phase following an
S-wave pattern. The radial velocity semiamplitude of the S-wave is ~10 km/s
indicating that its origin is near the centre of mass of the system, which in
this case lies very close to the white dwarf. Our resolution is higher than
that of previous data which allows us to resolve structure in the central peak
of the line. The central spike in three of the HeI lines shows another peak
blueshifted with respect to the main peak. We propose that one of the peaks is
a neutral helium forbidden transition excited in a high electron density
region. This forbidden transition is associated with the permitted one (the
stronger peak in two of the lines). The presence of a high electron density
region again favours the white dwarf as their origin.Comment: 14 pages, 16 figures. Accepted for publication in A&
739 observed NEAs and new 2-4m survey statistics within the EURONEAR network
We report follow-up observations of 477 program Near-Earth Asteroids (NEAs)
using nine telescopes of the EURONEAR network having apertures between 0.3 and
4.2 m. Adding these NEAs to our previous results we now count 739 program NEAs
followed-up by the EURONEAR network since 2006. The targets were selected using
EURONEAR planning tools focusing on high priority objects. Analyzing the
resulting orbital improvements suggests astrometric follow-up is most important
days to weeks after discovery, with recovery at a new opposition also valuable.
Additionally we observed 40 survey fields spanning three nights covering 11 sq.
degrees near opposition, using the Wide Field Camera on the 2.5m Isaac Newton
Telescope (INT), resulting in 104 discovered main belt asteroids (MBAs) and
another 626 unknown one-night objects. These fields, plus program NEA fields
from the INT and from the wide field MOSAIC II camera on the Blanco 4m
telescope, generated around 12,000 observations of 2,000 minor planets (mostly
MBAs) observed in 34 square degrees. We identify Near Earth Object (NEO)
candidates among the unknown (single night) objects using three selection
criteria. Testing these criteria on the (known) program NEAs shows the best
selection methods are our epsilon-miu model which checks solar elongation and
sky motion and the MPC's NEO rating tool. Our new data show that on average 0.5
NEO candidates per square degree should be observable in a 2m-class survey (in
agreement with past results), while an average of 2.7 NEO candidates per square
degree should be observable in a 4m-class survey (although our Blanco
statistics were affected by clouds). At opposition just over 100 MBAs (1.6
unknown to every 1 known) per square degree are detectable to R=22 in a 2m
survey based on the INT data, while our two best ecliptic Blanco fields away
from opposition lead to 135 MBAs (2 unknown to every 1 known) to R=23.Comment: Published in Planetary and Space Sciences (Sep 2013
The stellar occultation by Makemake on 2011 April 23
We have taken advantage of a stellar occultation by the dwarf planet Makemake on 2011 April 23, to determine several of its main physical properties. We present results from a multisite campaign with 8 positive occultation detections from 5 different sites, including data from the 8-m VLT and 3.5-m NTT telescopes in Chile, which have very high temporal resolution. Because the star was significantly fainter than Makemake (setting a record in the magnitude of a star whose occultation has been detected), the occultation resulted in a drop of just ~0.3 mag in the lightcurves. From the lightcurves we have been able to determine the size and shape of the body, its geometric albedo and constraints on its atmosphere
The Size, Shape, Albedo, Density, and Atmospheric Limit of Transneptunian Object (50000) Quaoar from Multi-chord Stellar Occultations
We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation observed on 2012 October 15. If the timing of the five chords obtained in 2011 were correct, then Quaoar would possess topographic features (crater or mountain) that would be too large for a body of this mass. An alternative model consists in applying time shifts to some chords to account for possible timing errors. Satisfactory elliptical fits to the chords are then possible, yielding an equivalent radius R [SUB]equiv[/SUB] = 555 ± 2.5 km and geometric visual albedo p[SUB]V[/SUB] = 0.109 ± 0.007. Assuming that Quaoar is a Maclaurin spheroid with an indeterminate polar aspect angle, we derive a true oblateness of \epsilon = 0.087^{+0.0268}_{-0.0175}, an equatorial radius of 569^{+24}_{-17} km, and a density of 1.99 ± 0.46 g cm[SUP]–3[/SUP]. The orientation of our preferred solution in the plane of the sky implies that Quaoar's satellite Weywot cannot have an equatorial orbit. Finally, we detect no global atmosphere around Quaoar, considering a pressure upper limit of about 20 nbar for a pure methane atmosphere.Peer reviewe
On the constraints violation in forward dynamics of multibody systems
It is known that the dynamic equations of motion for constrained mechanical multibody systems are frequently formulated using the Newton-Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of partial differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. The classical resolution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is offered. The basic idea of the described approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as function of the Moore-Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations. The described methodology is embedded in the standard method to solve the equations of motion based on the technique of Lagrange multipliers. Finally, the effectiveness of the described methodology is demonstrated through the dynamic modeling and simulation of different planar and spatial multibody systems. The outcomes in terms of constraints violation at the position and velocity levels, conservation of the total energy and computational efficiency are analyzed and compared with those obtained with the standard Lagrange multipliers method, the Baumgarte stabilization method, the augmented Lagrangian formulation, the index-1 augmented Lagrangian and the coordinate partitioning method.The first author expresses his gratitude to the Portuguese Foundation for Science and Technology through the PhD grant (PD/BD/114154/2016). This work has been supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 – Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.info:eu-repo/semantics/publishedVersio
HACIA LA COMPRENSION DE LA ESCUELA Y SUS VIVENCIAS Proyectos de Renovación Pedagógica para la Escuela Primaria
El presente estudio tiene la intención de brindarle un espacio al maestro para que se pronuncie sobre temas que conoce y, sobre todo, que sabe por su experiencia vivencial. A su vez, ha nacido de la convicción de que ya es tiempo de que el investigador vea en el saber docente (o del docente) una fuente viva, válida y llena de matices para profundizar en el conocimiento de la cotidianeidad de la escuela. Es preciso, de antemano, advertir una insuficiencia: la toma de la palabra por el maestro no puede venir de que alguien (llámese investigador, directivo, capacitador) le diga que hable; la verdadera voz del maestro será dicha cuando él se pronuncie , cuando se entienda como el hacedor de la educación y protagonista del conocimiento pedagógico. Aquí el maestro y los demás miembros de la “comunidad educativa” fueron invitados al pronunciamiento sobre la escuela
Biological funneling of phenolics from transgenic plants engineered to express the bacterial 3-dehydroshikimate dehydratase (qsuB) gene
The economic and environmental sustainability of lignocellulosic biomass biorefineries is predicated on generating biofuels and bioproducts from cell-wall polysaccharide and lignin polymers. Historical efforts in plant genetic engineering have focused on the development of strategies that facilitate biomass deconstruction, with more recently efforts including the synthesis of high-value chemicals in planta. One such genetic modification is the expression of the bacterial quinate and shikimate utilization B (qsuB) gene that increases the accumulation of protocatechuic acid in lignocellulosic biomass. Herein, we evaluated the effectiveness of an alkaline pretreatment process to extract phenolics directly from wild-type and QsuB-transgenic lines of Arabidopsis, poplar, and sorghum, and then upgrade them to the polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC) with an engineered strain of Novosphingobium aromaticivorans. Protocatechuic acid extracted from all QsuB transgenic lines was found to be mostly in the glycosylated form. Glycosylated protocatechuic acid and other plant-derived phenolics were effectively metabolized by N. aromaticivorans, and PDC production was greatest using extracts from an Arabidopsis QsuB transgenic line (∼5% w/w), followed by QsuB sorghum (∼1.1% w/w), and QsuB poplar (∼0.4% w/w) lines. The comparison of PDC production from wild-type and QsuB transgenic lines of Arabidopsis, poplar, and sorghum demonstrates the utility of a mild alkaline pretreatment to liberate phenolics from plant biomass that are either naturally present or that accumulate as a consequence of genetic engineering strategies. All QsuB transgenic lines outperformed their wild-type counterparts with respect to observed PDC yields. In addition, microbial funneling to PDC was effective even when most of the protocatechuic acid extracted was in glycosylated form, clearly demonstrating that this bacterium can metabolize these aromatic conjugates. These findings illustrate the benefits of combining plant and microbial engineering for bioproduct formation from phenolics in lignocellulosic biorefineries
- …
