122 research outputs found

    Lobster trap debris in the Florida Keys National Marine Sanctuary: distribution, abundance, density, and patterns of accumulation

    Get PDF
    The fishery for spiny lobster Panulirus argus in the Florida Keys National Marine Sanctuary is well chronicled, but little information is available on the prevalence of lost or abandoned lobster traps. In 2007, towed-diver surveys were used to identify and count pieces of trap debris and any other marine debris encountered. Trap debris density (debris incidences/ha) in historic trap-use zones and in representative benthic habitats was estimated. Trap debris was not proportionally distributed with fishing effort. Coral habitats had the greatest density of trap debris despite trap fishers’ reported avoidance of coral reefs while fishing. The accumulation of trap debris on coral emphasizes the role of wind in redistributing traps and trap debris in the sanctuary. We estimated that 85,548 ± 23,387 (mean ± SD) ghost traps and 1,056,127 ± 124,919 nonfishing traps or remnants of traps were present in the study area. Given the large numbers of traps in the fishery and the lack of effective measures for managing and controlling the loss of gear, the generation of trap debris will likely continue in proportion to the number of traps deployed in the fishery. Focused removal of submerged trap debris from especially vulnerable habitats such as reefs and hardbottom, where trap debris density is high, would mitigate key habitat issues but would not address ghost fishing or the cost of lost gear

    New F-19 NMR methodology reveals structures of molecules in complex mixtures of fluorinated compounds

    Get PDF
    Although the number of natural fluorinated compounds is very small, fluorinated pharmaceuticals and agrochemicals are numerous. (19)F NMR spectroscopy has a great potential for the structure elucidation of fluorinated organic molecules, starting with their production by chemical or chemoenzymatic reactions, through monitoring their structural integrity, to their biotic and abiotic transformation and ultimate degradation in the environment. Additionally, choosing to incorporate (19)F into any organic molecule opens a convenient route to study reaction mechanisms and kinetics. Addressing limitations of the existing (19)F NMR techniques, we have developed methodology that uses (19)F as a powerful spectroscopic spy to study mixtures of fluorinated molecules. The proposed (19)F-centred NMR analysis utilises the substantial resolution and sensitivity of (19)F to obtain a large number of NMR parameters, which enable structure determination of fluorinated compounds without the need for their separation or the use of standards. Here we illustrate the (19)F-centred structure determination process and demonstrate its power by successfully elucidating the structures of chloramination disinfectant by-products of a single mono-fluorinated phenolic compound, which would have been impossible otherwise. This novel NMR approach for the structure elucidation of molecules in complex mixtures represents a major contribution towards the analysis of chemical and biological processes involving fluorinated compounds

    Accumulation of Hexavalent Uranium by Highly Organic Soils at the Needle's Eye Natural Analogue Site, South West Scotland

    Get PDF
    Nuclear power has the potential to provide electricity with lower emissions of greenhouse gases than electricity generated by combustion of fossil fuels. However, a downside of nuclear power generation is the production of waste products which will be radioactive for long timescales into the future. Safe storage of generated waste is a significant consideration for the future use of nuclear power. Studies have been undertaken at the Needle's Eye Natural Analogue site in Southwest Scotland to evaluate if the highly organic soils (loss on ignition ~ 80%) at the site are an effective barrier for uranium (U), a major component of nuclear waste. Analysis of soils by x-ray absorption spectroscopy (XAS) demonstrated that, despite the dominant waterlogged and anaerobic conditions in the soil at the site, conducive to the reduction of U to U(IV), the majority of U in the upper 30 cm of the soil profile was present as U(VI) complexed with oxygen functional groups of soil organic matter (SOM). Results of SOM characterization (UV/Vis spectroscopy, FTIR and ¹H NMR) demonstrated that SOM in the region of the soil profile with greatest U accumulation was relatively enriched with carboxylate functional groups and fulvic acid organic matter compared to deeper in the soil profile where aromatic structures and humic acids became more prominent. The results indicate that highly organic soils can be an effective barrier to the mobility of U in the surface environment, with implications for the future selection of sites for long-term storage of nuclear waste

    Peptide Fragments of a β-Defensin Derivative with Potent Bactericidal Activity

    Get PDF
    β-Defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1C(V) has bactericidal activity similar to that of its parent peptide (murine β-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1C(V) is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this β-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide

    Expression patterns of protein C inhibitor in mouse development

    Get PDF
    Proteolysis of extracellular matrix is an important requirement for embryonic development and is instrumental in processes such as morphogenesis, angiogenesis, and cell migration. Efficient remodeling requires controlled spatio-temporal expression of both the proteases and their inhibitors. Protein C inhibitor (PCI) effectively blocks a range of serine proteases, and recently has been suggested to play a role in cell differentiation and angiogenesis. In this study, we mapped the expression pattern of PCI throughout mouse development using in situ hybridization and immunohistochemistry. We detected a wide-spread, yet distinct expression pattern with prominent PCI levels in skin including vibrissae, and in fore- and hindgut. Further sites of PCI expression were choroid plexus of brain ventricles, heart, skeletal muscles, urogenital tract, and cartilages. A strong and stage-dependent PCI expression was observed in the developing lung. In the pseudoglandular stage, PCI expression was present in distal branching tubules whereas proximal tubules did not express PCI. Later in development, in the saccular stage, PCI expression was restricted to distal bronchioli whereas sacculi did not express PCI. PCI expression declined in postnatal stages and was not detected in adult lungs. In general, embryonic PCI expression indicates multifunctional roles of PCI during mouse development. The expression pattern of PCI during lung development suggests its possible involvement in lung morphogenesis and angiogenesis

    Increasing Incidence of Geomyces destructans Fungus in Bats from the Czech Republic and Slovakia

    Get PDF
    BACKGROUND: White-nose syndrome is a disease of hibernating insectivorous bats associated with the fungus Geomyces destructans. It first appeared in North America in 2006, where over a million bats died since then. In Europe, G. destructans was first identified in France in 2009. Its distribution, infection dynamics, and effects on hibernating bats in Europe are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We screened hibernacula in the Czech Republic and Slovakia for the presence of the fungus during the winter seasons of 2008/2009 and 2009/2010. In winter 2009/2010, we found infected bats in 76 out of 98 surveyed sites, in which the majority had been previously negative. A photographic record of over 6000 hibernating bats, taken since 1994, revealed bats with fungal growths since 1995; however, the incidence of such bats increased in Myotis myotis from 2% in 2007 to 14% by 2010. Microscopic, cultivation and molecular genetic evaluations confirmed the identity of the recently sampled fungus as G. destructans, and demonstrated its continuous distribution in the studied area. At the end of the hibernation season we recorded pathologic changes in the skin of the affected bats, from which the fungus was isolated. We registered no mass mortality caused by the fungus, and the recorded population decline in the last two years of the most affected species, M. myotis, is within the population trend prediction interval. CONCLUSIONS/SIGNIFICANCE: G. destructans was found to be widespread in the Czech Republic and Slovakia, with an epizootic incidence in bats during the most recent years. Further development of the situation urgently requires a detailed pan-European monitoring scheme

    NMR and in silico studies of fucosylated chondroitin sulfate (fCS) and its interactions with selectins

    Get PDF
    This thesis describes structural studies on the interactions between the fucosylated chondroitin sulfate (fCS) oligosaccharides and human proteins known as selectins. fCS is a carbohydrate obtained from sea cucumbers, that can be classified as a branched glycosaminoglycan (GAG). It has attracted much attention due to its anti-coagulant, anti-inflammatory, antimetastatic and anti-HIV properties and its structure was previously determined by NMR. Selectins constitute a family of proteins involved in cell adhesion processes, such as inflammation, attachment of viral particles and migration of tumour cells. fCS oligosaccharides have been shown to bind to selectins, which is likely a reason behind their biological activity. However, the mechanism of this interaction is currently unknown. The initial part of the thesis describes the experimental work on expression and purification of the recombinant L- and P-selectin constructs in Pichia pastoris, Escherichia coli and HEK 293 cells. The aim of these experiments was to produce two constructs for each selectin, a single domain construct, consisting of the C-type lectin domain only, and a double domain construct, consisting of both the C-type lectin and the EGF-like domains. The intention was that the recombinant proteins would be labelled with 13C and 15N to allow for the in-depth structural NMR studies on the fCS-selectin interaction. Various experimental approaches have been explored, including the use of different cell lines, modifications to construct design, as well as alterations to expression and purification conditions. Although it was not possible to produce soluble selectin constructs in either bacterial or yeast cells, protein expression tests in HEK293 cells, performed in collaboration with the Oxford Protein Production facility (OPPF), led to production of a soluble L-selectin construct, consisting of the L-selectin C-type lectin domain. The produced L-selectin construct, as well as two commercially available constructs of the Land P-selectin extracellular domains, were used in the Saturation Transfer Difference (STD) NMR experiments to provide new information about the nature of the fCS-selectin binding. The STD experiments allowed to identify the regions within the fCS oligosaccharides that are in direct contact with the protein and likely play an important role in this interaction. Experiments on different protein constructs allowed the comparison of fCS binding to P-selectin and to two different recombinant constructs of L-selectin. Results of these studies suggest that the binding occurs via a similar mechanism for both L- and P-selectins and that the fCS oligosaccharides bind to one-domain L-selectin construct with similar affinity as to a larger construct, consisting of the entire extracellular region of the protein. Alongside the experimental work, theoretical in silico studies on the fCS-selectin binding were undertaken as part of this project. The existing X-ray structures of selectin complexes were subjected to Molecular Dynamics (MD) simulations, which allowed to explore the dynamic behaviour of E-selectin upon binding to sialyl Lewis x (sLex). It was found that sLex forms a more favourable interaction with the extended conformation of E-selectin and that the protein in this conformation is characterised by a high degree of interdomain flexibility, with a new type of interdomain movement observed in the MD studies on this complex. In further in silico studies, the fCS oligosaccharides were docked to the existing P-selectin structures. The docking tests were performed on the computationally produced fCS trisaccharides with fucose branches either 2,4 or 3,4-sulfated. Results were evaluated with MD simulations and analysed in the light of current knowledge of selectin-ligand binding and the STD NMR experimental results. The in silico studies allowed to identify a subset of P-selectin residues that are likely involved in the interaction with fCS oligosaccharides in vivo. The conformational behaviour of P-selectin upon binding to fCS was also explored and it was found that the interdomain hinge is flexible during this interaction and allows transition from bent to extended conformational state. Finally, a new NMR method was developed to facilitate the studies of complex carbohydrates, incorporating the concepts of G-matrix Fourier Transform (GFT) NMR into 2D HSQC and 2D HSQC-TOCSY experiments. The method allows to separate peaks in the regions of high spectral overlap, providing information that can simplify the assignment process. The new experiments facilitated the structural evaluation of a sample containing a mixture of oligosaccharides resulting from the depolymerisation of fCS polysaccharide

    N-glycans of Human Protein C Inhibitor: Tissue-Specific Expression and Function

    Get PDF
    Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewisx. A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M−1s−1 for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M−1s−1 for the corresponding PNGase F-treated forms. The 7–8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA
    corecore