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Abstract 

Human -defensin 2 (HBD2) has been shown to interact with pathogenic bacteria and components of the 

mammalian innate and adaptive immune response. We describe a quick and reliable method for the 

production of HBD2 in Escherichia coli. HBD2 was expressed as an insoluble fusion, chemically cleaved and 

oxidised to give a single, folded HBD2 -isoform. The purified peptide was analysed by high resolution mass 

spectrometry, displayed a well-dispersed 
1
H NMR spectrum, was a chemoattractant to HEK293 cells 

expressing CCR6 and acted as an antimicrobial agent against E. coli, P. aeruginosa and C. albicans. 

 

Introduction 

Antimicrobial peptides (AMPs) are essential components of the innate immune response and act as the first 

line of defence against invading pathogens 
[1]

. The AMP family displays enormous sequence, structural and 

functional diversity and over 900 different eukaryotic peptides have been characterized to date (sequences are 

available in the Antimicrobial Sequences Database (AMSDb), http://www.bbcm.univ.trieste.it/). Defensins are 

a subset of the AMP family and are small (3-5 kDa), cationic peptides that play roles in both innate and 

adaptive immunity 
[2-7]

. They are characterised by 6 conserved cysteine residues that form 3 disulfide bonds 

and are divided into two main subfamilies; alpha (-) and beta (-) are defined by their cysteine spacing, 

disulfide bond connectivity and genomic organisation. The -defensins display Cys1–Cys6, Cys2-Cys4, Cys3-

Cys5 S-S connectivity and contain ~29-35 residues, whereas the -defensins display a S-S connectivity of 

Cys1-Cys5, Cys2-Cys4, Cys3-Cys6 and consist of ~40-50 residues. A third subfamily, the -defensins also 

contain 3 S-S bonds but are cyclic peptides, fused at the N- and C-termini, and have only been found in rhesus 

monkeys. 

Analysis of the human genome revealed the presence of considerably more -defensin genes than previously 

thought 
[8]

. In contrast, only 6 human -defensins have been identified 
[9] 

and elegant studies of the structures 

and properties of these peptides (HNP1-4 and HD5 and HD6) by a number of research groups have begun to 

provide a better understanding of their role in the immune response 
[7,10-14]

. The high resolution structures of a 

few of the known mammalian -defensins have been determined by NMR spectroscopy and x-ray 

crystallography and include bovine neutrophil BD-12, penguin spheniscin and the human -defensins (HBD1, 

HBD2, HBD3) 
[15-22]

, but more work is needed to explore the structure/functional relationship of this sub-

family. We have chosen HBD2 as a target; it was shown that this defensin is expressed in epithelial cells and 

in the epidermis, and was originally isolated from human psoriatic scales 
[23]

. It is expressed as a 64 amino 

acid precursor peptide and the mature form consists of 41 residues with a net positive charge of +7. The 3D 

structure of mature HBD2 revealed an amphipathic molecule with distinct patches of positively-charged and 

hydrophobic residues 
[17,19,20]

. It is thought that this topology allows the defensin to interact with the outer cell 

components of bacterial membranes and act as a potent antimicrobial peptide against a range of pathogens 
[24]

. 
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Recent studies have shown that a number of defensins and their related peptide fragments, can act also as 

potent stimulators of the adaptive immune response, e.g. HBD2 acts as a chemoattractant for CD4 memory T 

cells and immature (but not mature) dendritic cells, by acting through the chemokine receptor CCR6, a 

member of the G-protein coupled receptor (GPCR) family 
[25,26]

. 

To study the molecular details of the interaction of HBD2 with its various targets we required a robust method 

for the production of single isoform material. The production of defensins suitable for structural and 

functional studies has been achieved by solid-phase peptide synthesis but the inherent amphiphilic nature of 

the peptide, protection strategies and losses upon oxidation have caused associated problems 
[27,28]

. As an 

alternative, recombinant methods have also been developed, e.g., Ganz and colleagues have used a 

baculovirus/insect cell system to produce active human peptides HNP-1, HD-5, HBD1 HBD2 
[29-32]

. As well 

as this method others have employed the common, easy-to-use host E. coli 
[33-36]

. Here however, there is the 

inevitable problem of toxicity of the defensins towards the host expression system but this has been overcome 

by expressing the peptide fused to a protein partner within inclusion bodies. This introduces a further cleavage 

step to release the mature peptide and results in low overall yield. The use of expensive proteases such as 

enterokinase also increases the cost of the overall production of sufficient quantities of peptide. New strategies 

such as using the yeast Saccharomyces cerevisiae as a host organism or production by a cell-free system have 

also emerged recently 
[37,38]

. These combined methods have allowed researchers to begin to explore the 

structure and activity of certain defensins 
[22,39-42]

. 

To produce defensins for a range of structural and functional studies, we describe a method for the production 

of recombinant, active, single isoform -HBD2 from an Escherichia coli host. We designed a codon-

optimised HBD2 gene for bacterial expression and synthesised this gene by recursive PCR 
[43]

 (Figure 1). and 

developed a protocol to isolate mature HBD2. This peptide was characterised by a range of structural 

techniques and was active in functional assays. 
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    AlwNI MetGlyIleGlyAspProValThrCysLeuLysSerGlyAlaIleCysHis 

1 CAGGCGCTGATGGGTATCGGTGACCCGGTTACCTGCCTGAAATCCGGTGCTATCTGCCAC 60 

GTCCGCGACTACCCATAGCCACTGGGCCAATGGACGGACTTTAGGCCACGATAGACGGTG 

 

  ProValPheCysProArgArgTyrLysGlnIleGlyThrCysGlyLeuProGlyThrLys 

61 CCGGTTTTCTGTCCGCGTCGTTACAAACAGATCGGTACCTGCGGTCTGCCGGGTACCAAA 120 

GGCCAAAAGACAGGCGCAGCAATGTTTGTCTAGCCATGGACGCCAGACGGCCCATGGTTT 

    

   CysCysLysLysPro*** AlwNI  

121 TGCTGCAAAAAACCGTGACAGATGCTG 147 

   ACGACGTTTTTTGGCACTGTCTACGAC   

(B) 

 

   1 MGSSHHHHHH SSGLVPRGSH AHTPEHITAV VQRFVAALNA GDLDGIVALF 

  51 ADDATVEDPV GSEPRSGTAA IREFYANSLK LPLAVELTQE VRAVANEAAF 

  101 AFTVSFEYQG RKTVVAPIDH FRFNGAGKVV SIRALFGEKN IHACQALMGI 

  151 GDPVTCLKSG AICHPVFCPR RYKQIGTCGL PGTKCCKKP 

(C) 

 

 

Figure 1. A. Schematic representation of expression vector pET-28a/HIS-KSI-HBD2. B. Design of synthetic, 

codon-optimized HBD2 gene (147 bp) for E. coli expression. Primers were designed for overlapping recursive 

PCR (see Table 1). The 5’ and 3’ primers incorporated AlwN1 restriction sites (bold) to allow cloning of KSI-

HBD2 fusion into pET28a. C. The full-length His-KSI-HBD2 fusion sequence (189 aa) with mature HBD2 

(41 aa) produced by CNBr cleavage after the Met residue highlighted in bold. The Met-Ala mutations in KSI 

(M1A and Met126A) are underlined. 
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Materials and methods 

Materials 

E. coli strains Top10 (Invitrogen) and BL21 (DE3) (Novagen) were used for construction of plasmids and 

expression of proteins respectively. Polymerase chain reaction (PCR) was carried out using Hercules 

polymerase (Stratagene) and puRe Taq Ready-To-Go PCR beads (GE Healthcare). PCR products were cloned 

initially in pGEM-T easy (Promega), then re-cloned into pET plasmids (Novagen). Site-directed mutagenesis 

used the Quick-change kit (Stratagene). Nickel-nitrilotriacetic acid (Ni-NTA) affinity resin was from Qiagen. 

Snakeskin dialysis tubing was from Pierce (3 kDa cut-off). Oligonucleotide primers were purchased from 

SigmaGenosys. All restriction enzymes and T4 DNA ligase were from New England Biolabs. Nu-PAGE 12% 

Bis-Tris pre-cast gels were from Invitrogen. HPLC columns were purchased from Phenomenex, synthetic 

human -defensin 2 (bHBD2, biotinylated at the N-terminus) was purchased from Albachem and Polymyxin 

B (PMB) was obtained from Calbiochem and tris(2-carboxyethyl)phosphine (TCEP) and CNBr were from 

Sigma. 

 

Synthesis and cloning of codon-optimized HBD2 

Six overlapping primers (Table 1) with codons optimized for expression in E. coli were designed using the 

mature HBD2 amino acid sequence (also known as DEFB4, Genbank accession number, NM_004942). The 

reaction contained in a final volume of 100 l: 10 l (100 pmol) of the outermost 5’ primers (P1 and P6) of 

each strand, 10 l (10 pmol) of the internal primers (P2 – P5), 4 l DMSO, 10 l 10 x Herculase reaction 

buffer (Stratagene), 1 l Herculase Hotstart DNA polymerase (Stratagene), 4 l 25 mM dNTPs, 21 l dH2O 

and was subjected to 30 PCR cycles of 95 ºC for 2 minutes, 40 ºC for 3 minutes and 72 ºC for 30 seconds. A 

second amplification was performed to confirm annealing of all six primers in a final volume of 50 l: 5 µl 

primer P1 (50 pmol), 5 l primer P6 (50 pmol), 2 l template, 38 l dH2O and 2 puRe Taq Ready-To-Go PCR 

beads were subjected to 30 PCR cycles of 95 ºC for 2 minutes, 40 ºC for 3 minutes, 72 ºC for 30 seconds and 

a final extension of 72 ºC for 10 minutes to add A overhangs. The PCR product (Figure 2A) containing the 

codon-optimized gene preceded by Met and flanking AlwN1 recognition sites was purified, cloned into 

pGEM-T Easy plasmid and a positive clone sequenced to confirm the fidelity of the insert. The target gene 

was then cut and ligated into the expression plasmid pET-31b (Novagen) to give pET-31b/HBD2. To 

incorporate a N-terminal His(6)-tag sequence, both pET-31b/HBD2 and pET-28a(+) vectors were cleaved by 

restriction enzymes NdeI and XhoI and the HBD2 fragment now containing the ketosteroid isomerase (KSI)-

fused gene was cloned into pET-28a (Figure 1A). To avoid CNBr cleavage at unwanted sites within the fusion 

residues Met 1 and 126 of KSI were replaced with Ala by site-directed mutagenesis to give plasmid pET-

28a/His-KSI-HBD2 (Figure 1 C). The fidelity of this clone was confirmed by DNA sequencing. 
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Figure 2. A. Synthesis of optimised HBD2 gene by recursive PCR. Lane 1, 1kb DNA Hyperladder I 

(Bioline); lane 2, recursive HBD2 PCR product. The band indicated by arrow is the 147bp codon-optimised 

HBD2 gene product. B. Expression of HIS-KSI-HBD2 in pET-28/HisKSI. 12 % Bis-Tris acrylamide gel 

analysis before and after induction with IPTG. Lane M, SeeBlue 2 protein marker (Invitrogen); lane 1, total 

bacterial lysate before induction; lane 2 insoluble fraction after induction (His-KSI-HBD2, Mr 20.2 kDa). 

 

Table 1. Primers used in synthesis of codon-optimised HBD2 

Primer Sequence (5’-3’) 

 

P1 

P2 

P3 

P4 

P5 

P6 

 

M1A For 

M1A Rev 

M126A For 

M126A Rev 

 

CAGATGCTGATGGGTATCGGTGACCCGGTTACCTGCCTGAAATCC 

CGGACAGAAAACCGGGTGGCAGATAGCACCGGATTTCAGGCAGGT 

CCGGTTTTCTGTCCGCGTCGTTACAAACAGATCGGTACCTGCGGT 

GCAGCATTTGGTACCCGGCAGACCGCAGGTACCGAT 

ACCAAATGCTGCAAAAAATGACAGATGCTG 

CAGCATCTGTCACGGTTTTTTGCAGCATTTGGTACCCGG 

 

GCGGCAGCCATGCGCATACCCCAGAACACATC 

GATGTGTTCTGGGGTATGCGCATGGCTGCCGC 

GAATATTCACGCATGCCAGGCGCTGATGGGTATCGGTGAC 

GTCACCGATACCCATCAGCGCCTGGCATGCGTGAATATTC 

 

Expression of KSI-HBD2 in E. coli 

The freshly transformed BL21 (DE3) colony containing the pET-28a/His-KSI-HBD2 plasmid was used to 

inoculate 250 mL of 2YT medium at 37 ºC, with shaking containing 30 g/mL kanamycin. This was grown 

for 12 hours and then added to 3 litres of 2YT, containing 30 g/mL kanamycin to give an OD600 0.1 and 

divided into six one litre flasks, with approximately 500 mL in each flask. Cells were grown at 37 ºC until an 

OD600 = 0.5, induced with a final concentration of 1 mM isopropyl--D-1-thiogalactopyranoside (IPTG), and 

incubated for a further 6 h. Cells were subsequently harvested by centrifugation (6000 rpm for 10 minutes, 

4 °C). 
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Isolation of KSI-HBD2 inclusion bodies and production of HBD2 

All centrifugation steps were carried out for 20 minutes at 11000 rpm and 4 ºC. The cell pellet containing 

highly expressed HisKSI-HBD2 was suspended in 5 mL/g in resuspension buffer (50 mM Tris, 25% sucrose, 

1 mM EDTA, 0.1% sodium azide, 10 mM DTT, pH 8.0), before addition of 50 mg/mL lysozyme, 500 mM 

MgCl2 and 10l DNase. After incubation for 30 minutes at room temperature, lysis buffer (50 mM Tris, 1% 

Triton X-100, 100 mM NaCl, 0.1% sodium azide, 10 mM DTT, pH 8.0) was added (5 mL/g wet weight 

original pellet) and incubated for 45 minutes at room temperature. To this cloudy suspension, EDTA (500 

mM) was added to give a final concentration of 1 mM, and the sample was snap-frozen in liquid N2 before 

immediately thawing for 30 minutes in a 37 ºC water bath. To this thawed extract, MgCl2 (500 mM) was 

added to give a 1mM final concentration and the sample was incubated at room temperature for 1 h to allow 

the viscosity to decrease before centrifugation. The supernatant was discarded and the pellet from this step 

was resuspended in an appropriate volume of buffer (50 mM Tris, 1% Triton X-100, 100 mM NaCl, 1 mM 

EDTA, 0.1% NaAzide, 1 mM DTT, pH 8.0), sonicated for 4 x 30 second blasts and centrifuged. The resulting 

pellet was then washed in 1 M Guanidine HCl buffer (1 M GuHCl, 50 mM Tris, 1% Triton X-100, 100 mM 

NaCl, 1 mM EDTA, 0.1% sodium azide, 1 mM DTT, pH 8.0), sonicated with 4 x 30 second bursts and 

centrifuged. The resulting pellet (inclusion bodies containing highly enriched KSI-HBD2) was resuspended in 

~ 50ml 6 M GuHCl binding buffer (6 M GuHCl, 50 mM Tris, 10 mM imidazole, 500 mM NaCl, 5 mM -

mercaptoethanol, pH 8.0). These inclusion bodies were added to 10 ml pre-equilibrated nickel-nitrilotriacetic 

acid (Ni-NTA, Qiagen) agarose affinity resin, mixed by rotation for 1 h at 4 
o
C, then decanted into an empty 

25 ml column reservoir. The packed resin was washed with 6 M GuHCl binding buffer (50 ml) and then 

eluted with 25 ml of elution buffer (6 M GuHCl, 50 mM Tris, 120 mM imidazole, 500 mM NaCl, 5 mM -

mercaptoethanol, pH 8.0). This elution step with 120 mM imidazole was then repeated to give 50 ml of 

purified HisKSI-HBD2. The eluted fusion protein was dialyzed against 25 mM Tris buffer, pH 8.0 overnight 

at 4 
o
C which caused precipitation of the fusion protein. 

The fusion was recovered by centrifugation and the pellet was resuspended in 6 M GuHCl, 25 mM Tris 

buffer, pH 8.0. To this HCl (5 M stock) was added until the pH was ~1.0. Solid CNBr was added to give a 

final concentration of 250 mM and cleavage was allowed to proceed for 24 h in the absence of light and under 

nitrogen. The cleaved mixture was evaporated at 42 
o
C using a rotary evaporator to remove any unreacted 

CNBr, and the concentrated sample was dialyzed against 25 mM Tris buffer, pH 8.0 overnight at 4 
o
C to cause 

precipitation of the KSI. The precipitate was removed by centrifugation and the supernatant containing HBD2 

was filtered (0. 45 M) and purified  

by RP-HPLC as described below. 
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Purification of HBD2 

Preparative RP-HPLC on a Jupiter™ Proteo column was performed with a Waters 600 control pump fitted 

with a photodiode array 996 detector using Millenium 32 software. The HBD2 isolated from the CNBr 

cleavage step was applied to the column in 3-4 ml batches, the column was washed with 5% acetonitrile then 

a linear gradient of 5-55% acetonitrile over 50 minutes at a flow rate of 3 mL/minute was used to elute the 

HBD2. Fractions were analysed by SDS-PAGE and those containing HBD2 were pooled and shown to be a 

mixture of partially reduced and oxidized peptides (by ESI-mass spectrometry). 

 

Oxidation of recombinant HBD2 

The HBD2 recovered by prep-HPLC was freeze-dried then reconstituted in 25 mM Tris, pH 8.0, with 20 mM 

tris(2-carboxyethyl)phosphine (TCEP) added to convert the peptide to the fully reduced form before re-

purification by prep-HPLC using identical conditions as above. Fractions containing HBD2 were freeze-dried 

then dissolved in 50 mM Tris, pH 8.0, 3 mM cysteine, 0.3 mM cystine and stirred for 4 h at room temperature. 

The reaction was followed by analytical RP-HPLC and analyzed by ESI-mass spectrometry to confirm that 

the HBD2 was present in the oxidized form (elution at 40 mins). The final yield of oxidized -HBD2 is 3-6 

mg from 3 litres of E. coli culture (based on 10 preparations). 

 

Western blot analysis 

Peptides were separated on a 12% Bis-Tris gel as described by the manufacturer (Invitrogen) followed by 

electroblotting using a Trans blot SD Semi-Dry Transfer cell (Bio-Rad) onto a Hybond-ECL nitrocellulose 

membrane (GE Healthcare). HBD2 was detected with a HBD2-specific antibody (Autogen Bioclear) and 

electrochemiluminescence plus (ECL
+
) using a Streptavidin-HRP antibody according to the manufacturer’s 

instructions (GE Healthcare). 

 

Disulfide bond connectivity 

The disulfide bond connectivity of the oxidized HBD2 was determined by trypsin/chymotrypsin digest, 

Edman degradation and mass spectrometry analysis as described previously 
[40,44]

. 
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1D 
1
H NMR Spectrum 

1 mg of oxidized HBD2 was dissolved in 20 mM sodium acetate buffer, pH 4.0 at 25 
o
C and 10% D2O (v:v) 

was added to give to a final peptide concentration of 0.46 mM. The 
1
H NMR spectrum was recorded on a 

Bruker AVANCE spectrometer equipped with a cryoprobe operating at 600 MHz and 25 °C. 128 scans were 

taken with a sweep width of 15 ppm and 8000 complex points. For water suppression double-pulsed gradient 

spin echo was used. 

 

Antimicrobial activity assay 

The purified, oxidized HBD2 was dissolved into 0.01% acetic acid and centrifuged (13000 rpm for 10 

minutes, 25 °C) to remove precipitate. The HBD2 was concentrated (Vivaspin 0.5 mL concentrator, 3000 

MWCO PES) to 1 mg/mL and stock HBD2 solutions of concentrations 15, 30, 60, 125, 250 and 500 μg/mL 

were prepared. Antimicrobial assays were carried out according to the method set out in our previous study 

[25,40,45]
. Briefly, a laboratory strain of E. coli K-12 MG1655 was grown to midlogarithmic phase (OD at 

600nm = 1.0). From this 90 l E. coli (~1.0 x 10
5
 cells) was incubated with 10 l of each stock HBD2 solution 

and as a negative control 90 l E. coli was incubated 10 l 0.01% acetic acid. These samples were incubated 

at 37 °C for 2 hours. Then 10-fold serial dilutions of
 
the incubation mixture were plated on Iso-Sensitest 

plates,
 
incubated at 37 °C, and the CFU was determined the following

 
day. Colonies were counted and the 

LD50, LD90 (Lethal Dose: amount of peptide required to kill 50 % and 90% of viable cells) and the MBC99.99 

(Minimum Bactericidal Concentration at 99.99 %) values were calculated from the resulting killing curve. 

The same antimicrobial assays were performed with Pseudomonas aeruginosa (PAO1), a Gram-positive strain 

Staphylococcus aureus (ATCC 25923) and a fungus, Candida albicans (J2922) 
[45]

. In parallel, the same 

strains were used with the antimicrobial agent Polymyxin B (PMB) as a control. All the killing assays were 

performed at least 3 times for each strain and the values were obtained by taking
 
the mean of each 3 

experiments.  

 

High resolution FT-ICR mass spectrometry 

The oxidized HBD2 was diluted to a final concentration of 1 µM in electrospray buffer, consisting of 50:50 

methanol:H2O with 0.2 % formic acid. Data was acquired on a 12 Tesla Apex Qe FT-ICR (Bruker Daltonics, 

Billerica, MA) equipped with mass resolving quadrupole, coupled to a nano-electrospray ionization (nESI) 

enabled TriVersa Nanomate (Advion Bioscience, Ithaca, NY). Samples were infused at a flow rate of 50 

nanolitres per minute. Desolvated ions were transmitted to a 6 cm Infinity cell

 penning trap. Trapped ions 

were excited (frequency chirp 48-500 kHZ at 100 steps of 25 s) and detected between m/z 600 and 2000 for 

1 s to yield broadband 1 Mword time-domain data. Each spectrum was the sum of 64 mass analyses. Typical 
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chamber base pressure was ~9 x 10
-11

 mbar. Time-domain FT-ICR data was acquired using an AQS console 

and the aquisition rate was typically ~1 scan/2 s. Fast Fourier Transforms and subsequent analyses were 

performed using DataAnalysis (Bruker Daltonics, Billerica, MA). 

 

Chemotaxis assay 

The chemotaxis activity analysis was carried out against HEK293 cells expressing CCR6 as we have 

previously reported 
[25]

. The migration of CCR6-transfected human embryonic kidney HEK293 cells was 

assessed with a microchemotaxis chamber technique. Chemotactic activity was measured as the optimal 

concentration of test compound at which the highest chemotactic index value was obtained. Experiments were 

carried out three times. CCL20 (also known as MIP3-) was from Peprotech (London, UK). 

 

Results and discussion 

Synthesis of HBD2 gene by recursive PCR 

Our goal was to produce mature, untagged HBD2 as a single -defensin isoform. Our strategy to enhance the 

expression of the toxic human antimicrobial peptide HBD2 in the host E. coli was to fuse it to the highly 

insoluble ketosteroid isomerase (KSI) tag using a commercially available plasmid. Six overlapping primers 

(Table 1) with codons optimized for expression in E. coli were designed to synthesise the HBD2 gene in a one 

step recursive PCR reaction 
[43] 

(Figure 1B). An ATG Met codon was incorporated at the 5’ end of the HBD2 

gene to enable cleavage of the peptide from the KSI tag by cyanogen bromide (CNBr) (Figure 1B). A similar 

chemical cleavage strategy had been used by Ganz and coworkers to produce active HBD2 expressed in 

baculovirus-infected insect cells 
[29]

. Restriction sites for AlwNI, flanking the HBD2 sequence, were 

engineered into the gene to enable cloning into the KSI expression plasmid, pET-31b and a stop codon was 

engineered upstream of the 3’ AlwNI site to avoid generation of a homoserine lactone HBD2 derivative after 

cleavage. Initial PCR gave a gene product at the expected size of the HBD2 target (144bp, Figure 2A) and a 

second PCR amplification using this template with the 5’ and 3’ terminal primers gave a gene that was cloned 

firstly into plasmid pGem-T Easy then into the expression plasmid pET-31b digested with the same enzyme. 

To utilize His-tag purification technology, the KSI-HBD2 fusion gene was excised from pET-31b and ligated 

into pET-28a downstream of a 6xHis-tag. To improve the efficiency of the chemical cleavage and generate a 

single CNBr cleavage site within the KSI-HBD2 fusion, the Met1 and Met126 residues within the KSI gene 

were converted to Ala by site-directed mutagenesis to generate the expression plasmid pET-28a/His-KSI-

HBD2 which was used for all further studies (Figure 1A). 
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Expression of His-KSI-HBD2 

Plasmid pET-28a/His-KSI-HBD2 was used to transform BL21 (DE3) cells and on a small scale (10ml) 

induction with IPTG, a strong band corresponding to His-KSI-HBD2 at 20.2 kDa was observed by SDS-

PAGE in agreement with the predicted molecular weight of the KSI-HBD2 fusion protein of 189aa (Figure 

2B). This expression was scaled up to 3 litres of culture medium and yielded ~9 g wet weight cell paste that 

was frozen at -20 C. 

 

Purification of His-KSI-HBD2 and cleavage of HBD2 

The His-KSI-HBD2 fusion was isolated from the bacterial pellet by a series washing and centrifugation steps. 

Aliquots were removed throughout the purification protocol and analysed by SDS-PAGE to monitor the 

increased purity and yield of His-KSI-HBD2. We engineered a methionine residue at the N-terminus of the 

HBD2 protein to allow cleavage from the KSI tag by CNBr. This non-enzymatic cleavage is efficient and less 

expensive than using proteolytic enzymes such as enterokinase. After a one-step Ni-NTA affinity purification, 

the His-KSI-HBD2 was sufficiently pure for CNBr cleavage (Figure 3A). After 18-22 h, the cleavage was 

complete and separation of the fusion protein from HBD2 was carried out by dialysis against buffer (25 mM 

Tris, pH 8.0) followed by centrifugation (10,000 r.p.m.) to remove any precipitate. Cleaved HBD2 was shown 

to be in the soluble fraction by SDS-PAGE (Figure 3A). 

 

 

(A) 
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(B) 

 

(C) 

Figure 3. Purification of recombinant HBD2 A. 12 % Bis-Tris acrylamide gel analysis of HIS-KSI-HBD2 

fusion (lane 1) and recovered, soluble HBD2 after CNBr cleavage (lane 2) (M, SeeBlue 2 marker 

(Invitrogen)). B. Western blot of oxidized HBD2 probed with anti-HBD2 antibody (Lane 1, Oxidised HBD2 

(2.5 g); lane 2, Synthetic biotinylated bHBD2 (1 g)). C. Reverse-phase HPLC chromatograms of reduced 

HBD2 (upper trace, ~34 mins) and oxidized HBD2 (lower trace, ~38 mins). 

 

Characterisation of oxidized, folded -defensin HBD2 

Soluble HBD2 was purified by preparative RP-HPLC and mass spectrometry showed that it was a mixture of 

reduced and oxidized forms. This HBD2 mixture was completely reduced using TCEP then purified by RP-

HPLC. The recovered HBD2 was oxidized at room temperature using a cysteine/cystine redox buffer. The 

fully oxidized form has a longer retention time (~4 minutes) compared to the reduced form (Figure 3C) in 

agreement with previously published data 
[44]

. This peptide was reactive in a Western blot assay with anti-

HBD2 antibody that confirms the identity of the purified HBD2 (Figure 3B). High resolution FT-ICR mass 

spectrometry was used to determine the accurate mass of HBD2 and confirm its oxidation state. The HBD2 

HBD2 bHBD2 

1 2 
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ionized efficiently displaying three charge states (+3, +4 and +5) and the isotopic distribution for the +4 

charge state and mass fit to those predicted for fully oxidised HBD2 with an elemental composition 

(C188H305N55O50S6) and average mass of 4328.23 Da (Figure 4). After purification and freeze drying, ~3-6 mg 

of fully oxidised -HBD2 was obtained. The 1D 
1
H NMR spectrum shows sharp, well-dispersed peaks in the 

amide region, which is indicative of a folded structure (Figure 5). Furthermore, it was important to carry out 

trypsin/chymotrypsin digest and Edman degradation analysis which showed that the peptide displayed the -

defensin (1-5, 2-4, 3-6) connectivity (data not shown). 

 

(A) 

 

(B) 

Figure 4. FT-ICR high resolution mass spectrometry analysis of recombinant HBD2. A. The ion envelope for 

nanospray FT-ICR analysis of oxidized HBD2 showing the +5 to +3 charge states. B. The isotopic envelope 

of the +4 charge state of oxidized HBD2. Closed circles represent the theoretical envelope expected from a 

[M+5H]5+

[M+4H]4+

[M+3H]3+

[M+5H]5+

[M+4H]4+

[M+3H]3+
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HBD2 monomer with all cysteines reduced and the closed triangles represent that expected from a fully 

oxidized HBD2 with 3 S-S bonds. 

 

 

 

Figure 5. 1D 
1
H NMR spectrum of oxidized HBD2 in 20 mM sodium acetate buffer pH 4.0 and 10 % D2O on 

a Bruker AVANCE spectrometer equipped with a cryoprobe operating at 600MHz and 25 C. Only the amide 

proton region is shown for clarity. 

 

Antimicrobial and chemotactic activity of recombinant HBD2 

Fully oxidised HBD2 was dissolved in 0.01% acetic acid and the sample was concentrated to 500 g/mL for 

the assay. We analysed the activity of the fully oxidised HBD2 against E. coli K-12 MG1655, P. aeruginosa 

PAO1, S. aureus ATCC 25923 and C. albicans J2922 using a previously published assay 
[25,40,45]

. Values of 

LD50, LD90 and MBC99.99 values against 1 x 10
5
 cells were determined (Table 2). HBD2 was found to be 

effective in killing Gram-negative bacteria (E. coli and P. aeruginosa) and yeast C. albicans in the µM range, 

but showed a lower bactericidal effect toward Gram-positive S. aureus. These results are in good agreement 

with that of the natural sample
[23]

, the recombinant HBD2 preparations from other groups 
[29,46]

 and peptide 

prepared by solid-phase peptide synthesis 
[47]

 (Table 2). 

Yang and colleagues discovered that many defensins are potent chemotactic agents against a range of cells 

from the mammalian immune system including dendritic cells and T cells 
[26]

. The exact nature of the 

molecular interactions between HBD2 and the CCR6 receptor are presently unknown but a recent analysis of 

HBD1/CCR6 has begun to explore the residues involved 
[22]

. It was shown that HBD2 was active in 
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chemotaxis assays against CCR6, a GPCR previously been shown to be activated by the chemokine CCL20 

(MIP3-). We tested our recombinant HBD2 against HEK293 cells expressing CCR6 in an assay we have 

used in our laboratory 
[25]

 and found that it had optimal activity at 100 ng/ml (Figure 6). 

 

Table 2. Comparison of antimicrobial activity of HBD2 with previous studies (values are in µg/mL, PMB: 

Polymyxin B as control AMP). 

Strain Source MBC99.99
a
/MIC

b 
LD90

c 
LD50

d 

E. coli K12-MG1655 

E. coli ML-35 

E. coli  

E. coli ML35p 

This paper 

47 

23 

29 

MBC99.99<20 
a
 (<1.5

 a
, PMB) 

17
 b
 

 

3-6 

 

~10 

4.25-12.25
 f
 

<1.5 

 

P. aeruginosa PAO1 

P. aeruginosa ATCC 

27853 

P. aeruginosa 

P. aeruginosa ATCC 9027 

This paper 

47 

23 

29 

<25
 a
 (<1.5

 a
, PMB) 

17
 b
 

 

<3 

 

~10 

4.25-12.25
 f
  

<1.5 

 

 

C. albicans J2922 

C. albicans 

C. albicans 

C. albicans 820 

This paper 

47 

23 

29 

>50
 a
 (<3

 a
, PMB) 

70
 b
 

 

>6 

 

25 

4.25-12.25
 f
 

>1.5 

S. aureus ATCC 25923 

S. aureus 710A 

S. aureus  

S. aureus ATCC 6341 

This paper 

47 

23 

29 

>50
 a
 (6

 a
, PMB) 

35-70
 b
 

100
 e
 

N.D.
 e
 

>12 

 

>3 

a 
MBC99.99 values are the minimum concentration of peptide required to kill 99.99% of initial inoculum. 

b 
MIC values are the lowest concentration of peptide that will inhibit the visible growth of a microorganism. 

c 
LD90 values are the concentration of peptide required to kill 90% of initial inoculum. 

d
 LD50 values are the concentration required to kill 50% of initial inoculum. 

e 
Bacteriostatic effect. 

f 
Bactericidal effect. 
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Figure 6. Chemotactic activity of HBD2. The graph shows the number of HEK293 cells expressing the 

human chemokine receptor CCR6 that migrate towards the peptides. The number of cells per high power field 

(No./HPF) under the microscope is given. Chemotaxis medium is the control, CCL20 (also known as MIP-3) 

is the known chemokine ligand of CCR6. Each assay was repeated three times, numerical data are means ± 

S.D. and columns with an asterisk indicate peptide with significant activity (p<0.05) above culture medium. 

 

Conclusion 

The method described in this paper is straight forward and low-cost, allowing for the production of milligram 

amounts of -defensin HBD2 in a commonly-used E. coli host. The mature form of HBD2 was isolated as a 

single, homogenous, oxidized isoform with -defensin S-S bond connectivity. This HBD2 was an active 

chemokine for cells expressing the GPCR receptor CCR6 and a potent antimicrobial peptide against a range of 

microbes. It displayed excellent structural properties (NMR spectroscopy and high resolution mass 

spectrometry) and is suitable for future analysis of HBD2 in complex with a range of biological targets. The 

expression clone is also su itable for generation of a range of mutant defensins. 
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