

Edinburgh Research Explorer

Molecular level characterisation of ion-exchange water treatment coupled to ceramic membrane filtration

Citation for published version:

Smith, AJR, Moore, G, Correia Semiao, A & Uhrin, D 2020, 'Molecular level characterisation of ionexchange water treatment coupled to ceramic membrane filtration', Environmental Science: Water Research and Technology. https://doi.org/10.1039/C9EW01042D

Digital Object Identifier (DOI):

10.1039/C9EW01042D

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Other version

Published In:

Environmental Science: Water Research and Technology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 11. May. 2020

Supplementary information

Molecular level characterisation of ion-exchange water treatment coupled to ceramic membrane filtration

Alan J. R. Smitha, Graeme Mooreb, Andrea J.C. Semiaoc, Dušan Uhrínat

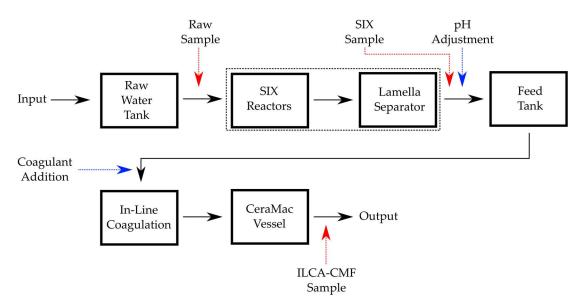

Table of Content

Fig. S1. Schematic setup of the pilot plant	2
Fig. S2. A detailed diagram of the SIX treatment stage	2
Fig. S3. Schematic setup of the WTW	2
Fig. S4. UpSet plot of raw, SIX and ILCA-CMF treated June pilot plant samples	3
Fig. S5. Van Krevelen plot of June ILCA-CMF and SIX treated samples	3
Fig. S6. Al _{mod} plot for the June pilot plant samples	4
Fig. S7. Oxygen series plot for pilot plant June samples	4
Fig. S8. Relative integrals of regions of ¹ H NMR spectra for the pilot plant June samples.	4
Fig. S9. ATR-FT-IR spectra of July pilot plant samples	5
Fig. S10. PCA scores plot of the ATR-FT-IR spectra	5
Table S1. m/z and associated formulae used to calibrate FT-ICR-MS spectra	6

^a EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, UK.

^b Scottish Water, Castle House, 6 Castle Drive, Dunfermline KY11 8GG, UK

^c School of Engineering, Institute for Infrastructure and Environment, University of Edinburgh, Edinburgh EH8 9YL, UK.

Fig. S1. Schematic setup of the pilot plant. Dashed boxed area is expanded in Fig. S9. Red arrows indicate sampling points.

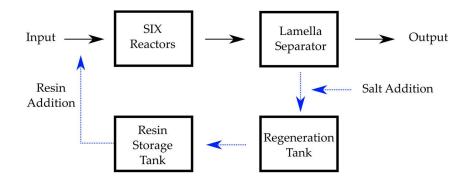
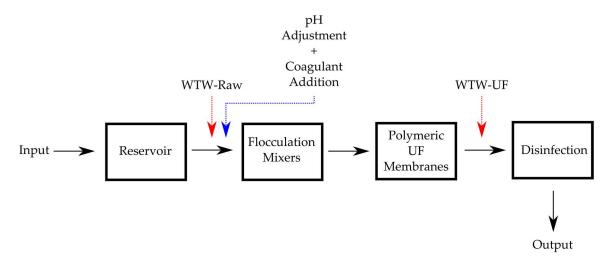
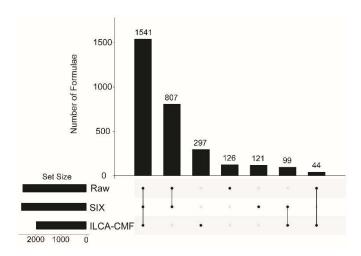
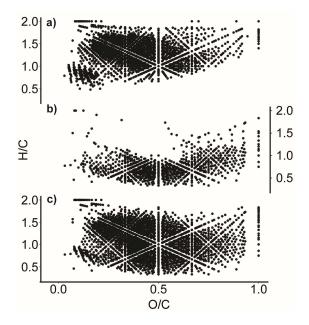


Fig. S2. A detailed diagram of the SIX treatment stage.

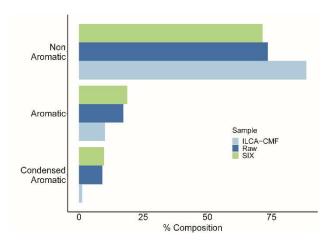
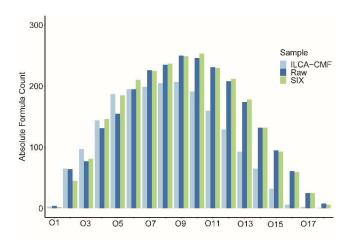
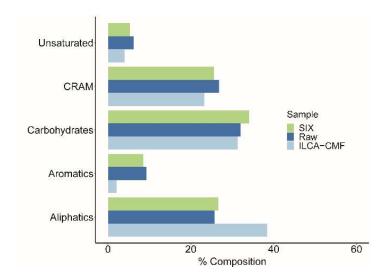
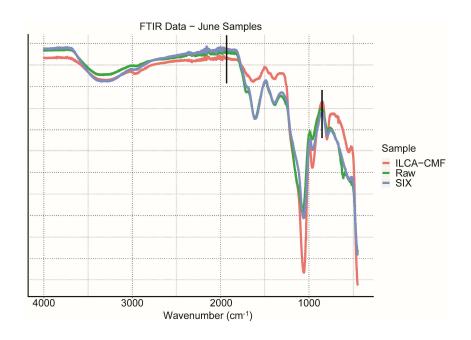

Fig. S3. A schematic diagram of the WTW. Red arrows indicate sampling points.

Fig. S4. Upset plot of raw, SIX and ILCA-CMF treated June pilot plant samples. Large similarities between the untreated DOM and SIX treated DOM are visible, as well as significant loss of species after the ILCA-CMF treatment.

Fig. S5. Van Krevelen plots for June samples. (a) all formulae identified in the ILCA-CMF treated sample; (b) formulae lost after the ILCA-CMF treatment; (c) all formulae identified in the SIX treated sample.

Fig. S6. AI_{mod} plot for the June pilot plant samples. There are far less condensed aromatic species present after the ILCA-CMF treatment.

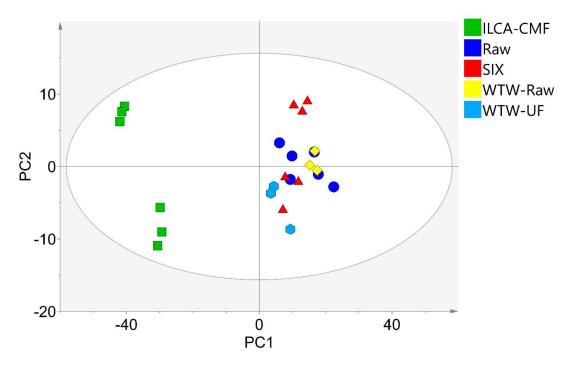

Fig. S7. Oxygen series plot for pilot plant June samples.

Fig. S8. Relative integrals of regions (shown in Figure 7 of the main article) of ¹H NMR spectra of the pilot plant June samples.

Fig. S9. ATR-FT-IR spectra of July pilot plant samples. The 800-2000 cm⁻¹ region indicated by two black lines was used for the PCA.

Fig. S10. PCA scores plot of the 800-2000 cm⁻¹ region of the ATR-FT-IR spectra of the July samples (identical plot to Fig.. 9a of the main article using shapes to indicate differences between sample types and not the time of collection). **Squares –** ILCA-CMF samples, **Circles –** raw samples, **Triangles –** SIX treated samples, **Diamonds –** WTW-raw samples and **hexagons –** WTW-UF samples.

Table S1. Molecular masses and formulae used to calibrate the FT-ICR-MS spectra of DOM samples.

m/z	Charge	Formula
149.060803	-1	C9H9O2
153.019332	-1	C7H5O4
259.045941	-1	C10H11O8
273.061591	-1	C11H13O8
287.077241	-1	C12H15O8
301.092891	-1	C13H17O8
315.108541	-1	C14H19O8
329.124191	-1	C15H21O8
343.139841	-1	C16H23O8
357.155491	-1	C17H25O8
371.098370	-1	C16H19O10
385.114020	-1	C17H21O10
399.129671	-1	C18H23O10
413.145321	-1	C19H25O10
427.160971	-1	C20H27O10
441.103850	-1	C19H21O12
455.119500	-1	C20H23O12
469.135150	-1	C21H25O12
483.150800	-1	C22H27O12
497.166450	-1	C23H29O12
511.182100	-1	C24H31O12
525.197750	-1	C25H33O12
539.213400	-1	C26H35O12
545.020908	-1	C23H13O16
559.036558	-1	C24H15O16
573.052208	-1	C25H17O16
587.067858	-1	C26H19O16
601.083508	-1	C27H21O16
615.099158	-1	C28H23O16
629.114808	-1	C29H25O16
643.130458	-1	C30H27O16
657.146108	-1	C31H29O16
671.161758	-1	C32H31O16
685.177409	-1	C33H33O16
699.083902	-1	C31H23O19
713.099552	-1	C32H25O19
727.115202	-1	C33H27O19
741.130852	-1	C34H29O19
755.146502	-1	C35H31O19