179 research outputs found

    Recurrent nocturnal hypoglycaemia as a cause of morning fatigue in treated Addison’s disease – Favourable response to dietary management: A case report

    Get PDF
    Background: Addison’s disease, or primary adrenal insufficiency, is often associated with reduced well-being and fatigue despite use of currently recommended adrenal hormone replacement. Hypoglycaemia is a known manifestation of glucocorticoid deficiency, but is generally considered rare in adults and not relevant to troubling ongoing symptoms in patients with Addison’s disease. Case presentation: A 43 year old woman with a three year history of Addison’s disease complained of severe morning fatigue and headaches, despite standard glucocorticoid replacement therapy in the form of thrice daily hydrocortisone and mineralocorticoid replacement with fludrocortisone. Alternative glucocorticoid replacement regimens and the addition of dehydroepiandrosterone replacement therapy had no effect. Nocturnal hypoglycaemia was suspected and a 4-day continuous glucose monitor system (CGMS) revealed hypoglycaemia (interstitial glucose \u3c 2.2mmol/L) between 0200–0400 h on 3 of 4 days. The patient was counselled to take an evening snack designed to ensure slow absorption of ingested carbohydrates. Nocturnal hypoglycaemia was then absent on follow up CGMS assessment. The patient noted a marked symptomatic improvement in morning symptoms, but with persistent fatigue during the day. Conclusion: Currently, the best strategy for control of non-specific symptoms in treated Addison’s disease is unknown, but it may be that investigation for hypoglycaemia and treatment, where necessary, could assist some sufferers to achieve improved wellbeing. A systematic study of this phenomenon in Addison’s disease is required

    Lung vasodilatory response to inhaled iloprost in experimental pulmonary hypertension: amplification by different type phosphodiesterase inhibitors

    Get PDF
    Inhaled prostanoids and phosphodiesterase (PDE) inhibitors have been suggested for treatment of severe pulmonary hypertension. In catheterized rabbits with acute pulmonary hypertension induced by continuous infusion of the stable thromboxane analogue U46619, we asked whether sildenafil (PDE1/5/6 inhibitor), motapizone (PDE3 inhibitor) or 8-Methoxymethyl-IBMX (PDE1 inhibitor) synergize with inhaled iloprost. Inhalation of iloprost caused a transient pulmonary artery pressure decline, levelling off within <20 min, without significant changes in blood gases or systemic hemodynamics. Infusion of 8-Methoxymethyl-IBMX, motapizone and sildenafil caused each a dose-dependent decrease in pulmonary artery pressure, with sildenafil possessing the highest efficacy and at the same time selectivity for the pulmonary circulation. When combining a per se ineffective dose of each PDE inhibitor (200 ÎŒg/kg × min 8-Methoxymethyl-IBMX, 1 ÎŒg/kg × min sildenafil, 5 ÎŒg/kg × min motapizone) with subsequent iloprost nebulization, marked amplification of the prostanoid induced pulmonary vasodilatory response was noted and the area under the curve of P(PA )reduction was nearly threefold increased with all approaches, as compared to sole iloprost administration. Further amplification was achieved with the combination of inhaled iloprost with sildenafil plus motapizone, but not with sildenafil plus 8MM-IBMX. Systemic hemodynamics and gas exchange were not altered for all combinations. We conclude that co-administration of minute systemic doses of selective PDE inhibitors with inhaled iloprost markedly enhances and prolongs the pulmonary vasodilatory response to inhaled iloprost, with maintenance of pulmonary selectivity and ventilation perfusion matching. The prominent effect of sildenafil may be operative via both PDE1 and PDE5, and is further enhanced by co-application of a PDE3 inhibitor

    What have transgenic and knockout animals taught us about respiratory disease?

    Get PDF
    Over the past decade there has been a significant shift to the use of murine models for investigations into the molecular basis of respiratory diseases, including asthma and chronic obstructive pulmonary disease. These models offer the exciting prospect of dissecting the complex interaction between cytokines, chemokines and growth related peptides in disease pathogenesis. Furthermore, the receptors and the intracellular signalling pathways that are subsequently activated are amenable for study because of the availability of monoclonal antibodies and techniques for targeted gene disruption and gene incorporation for individual mediators, receptors and proteins. However, it is clear that extrapolation from these models to the human condition is not straightforward, as reflected by some recent clinical disappointments. This is not necessarily a problem with the use of mice itself, but results from our continued ignorance of the disease process and how to improve the modelling of complex interactions between different inflammatory mediators that underlie clinical pathology. This review highlights some of the strengths and weaknesses of murine models of respiratory disease

    Modular Microsystem for the Isolation, Enumeration, and Phenotyping of Circulating Tumor Cells in Patients with Pancreatic Cancer

    Get PDF
    In this manuscript, we discuss the development and clinical use of a thermoplastic modular microsystem for the high-throughput analysis of CTCs directly from whole blood. The modular system offers some innovative features that address challenges currently associated with many CTC platforms; it can exhaustively process 7.5 ml of blood in less than 45 min with recoveries >90%. In addition, the system automates the post-selection CTC processing steps and thus, significantly reduces assay turnaround time (from selection to enumeration 8 h for many reported CTC platforms). The system is comprised of 3 functional modules including; (i) a thermoplastic CTC selection module composed of high aspect ratio (30 ÎŒm × 150 ÎŒm) channels containing anti-EpCAM antibodies that is scalable in terms of throughput by employing channel numbers ranging from 50 to 320 – the channel number is user selected to accommodate the volume of blood that must be processed; (ii) an impedance sensor module for label-less CTC counting; and (iii) a staining and imaging module for the placement of released cells into a 2D array within a common imaging plane for phenotypic identification. To demonstrate the utility of this system, blood samples from patients with local resectable and metastatic pancreatic ductal adenocarcinoma (PDAC) were analyzed. We demonstrate the ability to select EpCAM positive CTCs from PDAC patients in high purity (>86%) and with excellent yields (mean = 53 CTCs per ml for metastatic PDAC patients) using our modular system. In addition, we demonstrate the ability to detect CTCs in PDAC patients with local resectable disease (mean = 11 CTCs per ml)

    Phosphodiesterase 4 Inhibition Reduces Innate Immunity and Improves Isoniazid Clearance of Mycobacterium tuberculosis in the Lungs of Infected Mice

    Get PDF
    Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is one of the leading infectious disease causes of morbidity and mortality worldwide. Though current antibiotic regimens can cure the disease, treatment requires at least six months of drug therapy. One reason for the long duration of therapy is that the currently available TB drugs were selected for their ability to kill replicating organisms and are less effective against subpopulations of non-replicating persistent bacilli. Evidence from in vitro models of Mtb growth and mouse infection studies suggests that host immunity may provide some of the environmental cues that drive Mtb towards non-replicating persistence. We hypothesized that selective modulation of the host immune response to modify the environmental pressure on the bacilli may result in better bacterial clearance during TB treatment. For this proof of principal study, we compared bacillary clearance from the lungs of Mtb-infected mice treated with the anti-TB drug isoniazid (INH) in the presence and absence of an immunomodulatory phosphodiesterase 4 inhibitor (PDE4i), CC-3052. The effects of CC-3052 on host global gene expression, induction of cytokines, and T cell activation in the lungs of infected mice were evaluated. We show that CC-3052 modulates the innate immune response without causing generalized immune suppression. Immune modulation combined with INH treatment improved bacillary clearance and resulted in smaller granulomas and less lung pathology, compared to treatment with INH alone. This novel strategy of combining anti-TB drugs with an immune modulating molecule, if applied appropriately to patients, may shorten the duration of TB treatment and improve clinical outcome

    Effects of Phosphodiesterase 4 Inhibition on Alveolarization and Hyperoxia Toxicity in Newborn Rats

    Get PDF
    International audienceBACKGROUND: Prolonged neonatal exposure to hyperoxia is associated with high mortality, leukocyte influx in airspaces, and impaired alveolarization. Inhibitors of type 4 phosphodiesterases are potent anti-inflammatory drugs now proposed for lung disorders. The current study was undertaken to determine the effects of the prototypal phosphodiesterase-4 inhibitor rolipram on alveolar development and on hyperoxia-induced lung injury. METHODOLOGY/FINDINGS: Rat pups were placed under hyperoxia (FiO2>95%) or room air from birth, and received rolipram or its diluent daily until sacrifice. Mortality rate, weight gain and parameters of lung morphometry were recorded on day 10. Differential cell count and cytokine levels in bronchoalveolar lavage and cytokine mRNA levels in whole lung were recorded on day 6. Rolipram diminished weight gain either under air or hyperoxia. Hyperoxia induced huge mortality rate reaching 70% at day 10, which was prevented by rolipram. Leukocyte influx in bronchoalveolar lavage under hyperoxia was significantly diminished by rolipram. Hyperoxia increased transcript and protein levels of IL-6, MCP1, and osteopontin; rolipram inhibited the increase of these proteins. Alveolarization was impaired by hyperoxia and was not restored by rolipram. Under room air, rolipram-treated pups had significant decrease of Radial Alveolar Count. CONCLUSIONS: Although inhibition of phosphodiesterases 4 prevented mortality and lung inflammation induced by hyperoxia, it had no effect on alveolarization impairment, which might be accounted for by the aggressiveness of the model. The less complex structure of immature lungs of rolipram-treated pups as compared with diluent-treated pups under room air may be explained by the profound effect of PDE4 inhibition on weight gain that interfered with normal alveolarization

    Association of the phosphodiesterase 4D (PDE4D) gene and cardioembolic stroke in an Australian cohort

    Get PDF
    Background: Large-scale epidemiological studies support an important role for susceptibility genes in the pathogenesis of ischemic stroke, with phosphodiesterase 4D identified as the first gene predisposing to ischemic stroke. Several single nucleotide polymorphisms within the phosphodiesterase 4D gene have been implicated in the pathogenesis of stroke. Aim: Undertake a multivariate analysis of six single nucleotide polymorphisms within the phosphodiesterase 4D gene in a previously defined Australian stroke cohort, to determine whether these single nucleotide polymorphisms have an association with ischemic stroke. Methods: This case–control study was performed using an existing genetic database of 180 ischemic stroke patients and 301 community controls, evaluated previously for cerebrovascular risk factors (hypertension, hypercholesterolemia, diabetes, paroxysmal atrial fibrillation, smoking and history of stroke in a first-degree relative). Based on previously reported associations with large vessel disease, ischemic stroke, cardioembolic stroke or a mixture of these, six single nucleotide polymorphisms in the phosphodiesterase 4D gene were selected for study, these being single nucleotide polymorphisms 13, 19, rs152312, 45, 83 and 87, based on previously utilized DeCODE nomenclature. Single nucleotide polymorphisms were genotyped using a sequence-specific polymerase chain reaction method and gel electrophoresis. Logistic regression was undertaken to determine the relevance of each polymorphism to stroke. Further analysis was undertaken to determine the risk of stroke following stratification for stroke sub-type and etiology. Results: Significant odds ratios were found to be associated with cardioembolic strokes in two single nucleotide polymorphisms: rs152312 and SNP 45 (P<0·05). Conclusions: Our findings demonstrated an association between cardioembolic stroke and phosphodiesterase 4D single nucleotide polymorphisms rs152312 and 45. No significant association was found for the other four single nucleotide polymorphisms investigated within the phosphodiesterase 4D gene. We propose that the results from this Australian population support the concept that a large prospective international study is required to investigate the role of phosphodiesterase 4D in the cardiogenic cause of ischemic stroke.Austin G. Milton, Verna M. Aykanat, M. Anne Hamilton-Bruce, Mark Nezic, Jim Jannes, Simon A. Kobla

    Phosphodiesterase 4 inhibition in the treatment of psoriasis, psoriatic arthritis and other chronic inflammatory diseases

    Get PDF
    Agents which increase intracellular cyclic adenosine monophosphate (cAMP) may have an antagonistic effect on pro-inflammatory molecule production so that inhibitors of the cAMP degrading phosphodiesterases have been identified as promising drugs in chronic inflammatory disorders. Although many such inhibitors have been developed, their introduction in the clinic has been hampered by their narrow therapeutic window with side effects such as nausea and emesis occurring at sub-therapeutic levels. The latest generation of inhibitors selective for phosphodiesterase 4 (PDE4), such as apremilast and roflumilast, seems to have an improved therapeutic index. While roflumilast has been approved for the treatment of exacerbated chronic obstructive pulmonary disease (COPD), apremilast shows promising activity in dermatological and rheumatological conditions. Studies in psoriasis and psoriatic arthritis have demonstrated clinical activity of apremilast. Efficacy in psoriasis is probably equivalent to methotrexate but less than that of monoclonal antibody inhibitors of tumour necrosis factor (TNFi). Similarly, in psoriatic arthritis efficacy is less than that of TNF inhibitors. PDE4 inhibitors hold the promise to broaden the portfolio of anti-inflammatory therapeutic approaches in a range of chronic inflammatory diseases which may include granulomatous skin diseases, some subtypes of chronic eczema and probably cutaneous lupus erythematosus. In this review, the authors highlight the mode of action of PDE4 inhibitors on skin and joint inflammatory responses and discuss their future role in clinical practice. Current developments in the field including the development of topical applications and the development of PDE4 inhibitors which specifically target the subform PDE4B will be discussed
    • 

    corecore