1,106 research outputs found

    Surface grafting of electrospun fibers using ATRP and RAFT for the control of biointerfacial interactions

    Get PDF
    BACKGROUND The ability to present signalling molecules within a low fouling 3D environment that mimics the extracellular matrix is an important goal for a range of biomedical applications, both in vitro and in vivo. Cell responses can be triggered by non-specific protein interactions occurring on the surface of a biomaterial, which is an undesirable process when studying specific receptor-ligand interactions. It is therefore useful to present specific ligands of interest to cell surface receptors in a 3D environment that minimizes non-specific interactions with biomolecules, such as proteins. METHOD In this study, surface-initiated atom transfer radical polymerization (SI-ATRP) of poly(ethylene glycol)-based monomers was carried out from the surface of electrospun fibers composed of a styrene/vinylbenzyl chloride copolymer. Surface initiated radical addition-fragmentation chain transfer (SI-RAFT) polymerisation was also carried out to generate bottle brush copolymer coatings consisting of poly(acrylic acid) and poly(acrylamide). These were grown from surface trithiocarbonate groups generated from the chloromethyl styrene moieties existing in the original synthesised polymer. XPS was used to characterise the surface composition of the fibers after grafting and after coupling with fluorine functional XPS labels. RESULTS Bottle brush type coatings were able to be produced by ATRP which consisted of poly(ethylene glycol) methacrylate and a terminal alkyne-functionalised monomer. The ATRP coatings showed reduced non-specific protein adsorption, as a result of effective PEG incorporation and pendant alkynes groups existing as part of the brushes allowed for further conjugation of via azide-alkyne Huisgen 1,3-dipolar cycloaddition. In the case of RAFT, carboxylic acid moieties were effectively coupled to an amine label via amide bond formation. In each case XPS analysis demonstrated that covalent immobilisation had effectively taken place. CONCLUSION Overall, the studies presented an effective platform for the preparation of 3D scaffolds which contain effective conjugation sites for attachment of specific bioactive signals of interest, as well as actively reducing non-specific protein interactions.This research was supported by the Cooperative Research Centre for Polymers (CRCP)

    Hydration and the true water content of swellable clay minerals

    Get PDF
    Water affects biological, chemical and transportation processes as well as mechanical properties of soils. Thereby, clay mineral content determines the moisture balance of soils. In-situ moisture measurements depend on reliable calibration based on the true water content. Drying the soil at 105 °C is the most common procedure to determine the water content although it is known, swellable clay minerals retain hydration water up to much higher temperatures. The amplified water uptake and retention by swellable clay minerals results from hydration of interlayer cations. Thereby, the water binding mechanisms are complex due to structural heterogeneity and are determined by layer charge density and location of substitutions. While several experimental studies deal with the maximum water uptake of selected smectites and heating conditions for full dehydration a comprehensive understanding of the relation between the structure of smectites and water uptake/release is still missing. The Na-saturated smectite / water interface for the montmorillonite-beidellite series is investigated in the present work within the density functional theory (DFT). Layer charge is varied between 0.125 and 0.5 per formula unit [O10(OH)2] by substitution of Al3+ by Mg2+ in the octahedral sheet (montmorillonites) and by substitution of Si4+ by Al3+ in the tetrahedral sheets (beidellites). Starting from the water free supercells (with integer molar ratios), the number of water molecules is increased discretely. Stable hydration states (1H to 3H) do not necessarily correspond to the formation of water layers (1W to 3W) in the interlayer, which is deduced from the development of the basal spaces during hydration. With the help of ab initio thermodynamics, the energy states are related to temperature, and partial pressure of H2O and the resulting phase diagrams revealed hydration state in dependence of relative humidity (RH) as well as necessary temperatures for full dehydration to determine the true water content. Thereby it was shown that 2:1 layer silicates with a layer charge of 0.125 are swellable but reach only the 1H state even at 100% RH, but the removal of water molecules from the interlayer requires temperatures >110 °C and partial pressures of water <100 Pa. In contrast water uptake of smectites with layer charge 0.375 requires RH of >11% at room temperature, but dehydration occurs at moderate heating

    Bioceramic nanocomposite thiol-acrylate polyHIPE scaffolds for enhanced osteoblastic cell culture in 3D

    Get PDF
    Emulsion-templated (polyHIPE) scaffolds for bone tissue engineering were produced by photopolymerisation of a mixture of trimethylolpropane tris(3-mercaptopropionate) and dipentaerythritol penta-/hexa-acrylate in the presence of hydroxyapatite (HA) or strontium-modified hydroxyapatite (SrHA) nanoparticles. Porous and permeable polyHIPE materials were produced regardless of the type or incorporation level of the bioceramic, although higher loadings resulted in a larger average pore diameter. Inclusion of HA and SrHA into the scaffolds was confirmed by EDX-SEM, FTIR and XPS and quantified by thermogravimetry. Addition of HA to polyHIPE scaffolds significantly enhanced compressive strength (148-216 kPa) without affecting compressive modulus (2.34-2.58 MPa). The resulting materials were evaluated in vitro as scaffolds for the 3D culture of MG63 osteoblastic cells vs. a commercial 3D cell culture scaffold (Alvetex®). Cells were able to migrate throughout all scaffolds, achieving a high density by the end of the culture period (21 days). The presence of HA and in particular SrHA gave greatly enhanced cell proliferation, as determined by staining of histological sections and total protein assay (Bradford). Furthermore, Von Kossa and Alizarin Red staining demonstrated significant mineralisation from inclusion of bioceramics, even at the earliest time point (day 7). Production of alkaline phosphatase (ALP), an early osteogenic marker, was used to investigate the influence of HA and SrHA on cell function. ALP levels were significantly reduced on HA- and SrHA-modified scaffolds by day 7, which agrees with the observed early onset of mineralisation in the presence of the bioceramics. The presented data support our conclusions that HA and SrHA enhance osteoblastic cell proliferation on polyHIPE scaffolds and promote early mineralisation

    Het Kielerkastje en zo meer

    Get PDF
    Omdat imker Roelof Waaijer zich al jarenlang op Duitsland heeft georiënteerd - zelfs zijn BMW voert een Duits nummerbord - is hem het Kielerkastje allerminst vreemd. Hij heeft er zeker zo'n tien jaar mee gewerkt en heeft er nu een flink aantal bestemd voor de aanstaande 'boeldag', want hij gebruikt ze niet meer. Voor de Duitse Waddeneilanden is het EWK-verplicht en voor eigen gebruik (het standbevruchten van zijn Carnica-koninginnen) hanteert hij het zgn. kleine Cellerkastje. Beide komen hieronder aan de ord

    Minimal attachment of Pseudomonas aeruginosa to DNA modified surfaces

    Full text link
    © 2018 Author(s). Extracellular deoxyribonucleic acid (eDNA) exists in biological environments such as those around medical implants since prokaryotic or eukaryotic cells can undergo processes such as autolysis, necrosis, and apoptosis. For bacteria, eDNA has been shown to be involved in biofilm formation and gene transfer and acts as a nutrient source. In terms of biofilm formation, eDNA in solution has been shown to be very important in increasing attachment; however, very little is known about the role played by surface immobilized eDNA in initiating bacterial attachment and whether the nature of a DNA layer (physically adsorbed or covalently attached, and molecular weight) influences biofilm formation. In this study, the authors shed light on the role that surface attached DNA plays in the early biofilm formation by using Si wafers (Si) and allylamine plasma polymer (AAMpp) coated Si wafers to adsorb and covalently immobilize salmon sperm DNA of three different molecular weights. Pseudomonas aeruginosa was chosen to study the bacterial interactions with these DNA functionalized surfaces. Characterization of surface chemistry and imaging of attached bacteria were performed via x-ray photoelectron spectroscopy (XPS), scanning electron microscopy, and epi-fluorescence microscopy. XPS results confirmed the successful grafting of DNA on the AAMpp and Si surfaces, and surprisingly the results showed that the surface attached DNA actually reduced initial bacterial attachment, which was contrary to the initial hypothesis. This adds speculation about the specific role played by DNA in the dynamics of how it influences biofilm formation, with the possibility that it could actually be used to make bacterial resistant surfaces

    Structural, item, and test generalizability of the psychopathology checklist - revised to offenders with intellectual disabilities

    Get PDF
    The Psychopathy Checklist–Revised (PCL-R) is the most widely used measure of psychopathy in forensic clinical practice, but the generalizability of the measure to offenders with intellectual disabilities (ID) has not been clearly established. This study examined the structural equivalence and scalar equivalence of the PCL-R in a sample of 185 male offenders with ID in forensic mental health settings, as compared with a sample of 1,212 male prisoners without ID. Three models of the PCL-R’s factor structure were evaluated with confirmatory factor analysis. The 3-factor hierarchical model of psychopathy was found to be a good fit to the ID PCL-R data, whereas neither the 4-factor model nor the traditional 2-factor model fitted. There were no cross-group differences in the factor structure, providing evidence of structural equivalence. However, item response theory analyses indicated metric differences in the ratings of psychopathy symptoms between the ID group and the comparison prisoner group. This finding has potential implications for the interpretation of PCL-R scores obtained with people with ID in forensic psychiatric settings
    • …
    corecore