7,424 research outputs found

    Commercialization of NESSUS: Status

    Get PDF
    A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine

    Loop Representations of the Quark Determinant in Lattice QCD

    Get PDF
    The modelling of the ultraviolet contributions to the quark determinant in lattice QCD in terms of a small number of Wilson loops is examined. Complete Dirac spectra are obtained for sizeable ensembles of SU(3) gauge fields at β\beta=5.7 on 64^4, 84^4, and 104^4 lattices allowing for the first time a detailed study of the volume dependence of the effective loop action generating the quark determinant. The connection to the hopping parameter expansion is examined in the heavy quark limit. We compare the efficiency and accuracy of various methods- specifically, Lanczos versus stochastic approaches- for extracting the quark determinant on an ensemble of configurations.Comment: 20 pages, LaTe

    Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations

    Get PDF
    We analyse the performance of twelve different implementations of Smoothed Particle Hydrodynamics (SPH) using seven tests designed to isolate key hydrodynamic elements of cosmological simulations which are known to cause the SPH algorithm problems. In order, we consider a shock tube, spherical adiabatic collapse, cooling flow model, drag, a cosmological simulation, rotating cloud-collapse and disc stability. In the implementations special attention is given to the way in which force symmetry is enforced in the equations of motion. We study in detail how the hydrodynamics are affected by different implementations of the artificial viscosity including those with a shear-correction modification. We present an improved first-order smoothing-length update algorithm that is designed to remove instabilities that are present in the Hernquist and Katz (1989) algorithm. For all tests we find that the artificial viscosity is the most important factor distinguishing the results from the various implementations. The second most important factor is the way force symmetry is achieved in the equation of motion. Most results favour a kernel symmetrization approach. The exact method by which SPH pressure forces are included has comparatively little effect on the results. Combining the equation of motion presented in Thomas and Couchman (1992) with a modification of the Monaghan and Gingold (1983) artificial viscosity leads to an SPH scheme that is both fast and reliable.Comment: 30 pages, 26 figures and 9 tables included. Submitted to MNRAS. Postscript version available at ftp://phobos.astro.uwo.ca/pub/etittley/papers/sphtest.ps.g

    Randomized sham controlled trial of cranial microcurrent stimulation for symptoms of depression, anxiety, pain, fatigue and sleep disturbances in women receiving chemotherapy for early-stage breast cancer

    Get PDF
    Purpose Women with breast cancer may experience symptoms of depression, anxiety, pain, fatigue and sleep disturbances during chemotherapy. However, there are few modalities that address multiple, commonly occurring symptoms that may occur in individuals receiving cancer treatment. Cranial electrical stimulation (CES) is a treatment that is FDA cleared for depression, anxiety and insomnia. CES is applied via electrodes placed on the ear that deliver pulsed, low amplitude electrical current to the head. Methods This phase III randomized, sham-controlled study aimed to examine the effects of cranial microcurrent stimulation on symptoms of depression, anxiety, pain, fatigue, and sleep disturbances in women receiving chemotherapy for early-stage breast cancer. Patients were randomly assigned to either an actual or sham device and used the device daily for 1 h. The study was registered at clinicaltrials.gov, NCT00902330. Results The sample included N = 167 women with early-stage breast cancer. Symptom severity of depression, anxiety, and fatigue and sleep disturbances were generally mild to moderate. Levels of pain were low. Anxiety was highest prior to the initial chemotherapy and decreased over time. The primary outcome assessment (symptoms of depression, anxiety, fatigue, pain, sleep disturbances) revealed no statistically significant differences between the two groups, actual CES vs. sham. Conclusion In this study, women receiving chemotherapy for breast cancer experienced multiple symptoms in the mild to moderate range. Although there is no evidence for the routine use of CES during the chemotherapy period for symptom management in women with breast cancer, further symptom management modalities should be evaluated to mitigate symptoms of depression, anxiety, fatigue, pain and sleep disturbances over the course of chemotherapy

    Toward an Improved Analytical Description of Lagrangian Bias

    Full text link
    We carry out a detailed numerical investigation of the spatial correlation function of the initial positions of cosmological dark matter halos. In this Lagrangian coordinate system, which is especially useful for analytic studies of cosmological feedback, we are able to construct cross-correlation functions of objects with varying masses and formation redshifts and compare them with a variety of analytical approaches. For the case in which both formation redshifts are equal, we find good agreement between our numerical results and the bivariate model of Scannapieco & Barkana (2002; SB02) at all masses, redshifts, and separations, while the model of Porciani et al. (1998) does well for all parameters except for objects with different masses at small separations. We find that the standard mapping between Lagrangian and Eulerian bias performs well for rare objects at all separations, but fails if the objects are highly-nonlinear (low-sigma) peaks. In the Lagrangian case in which the formation redshifts differ, the SB02 model does well for all separations and combinations of masses, apart from a discrepancy at small separations in situations in which the smaller object is formed earlier and the difference between redshifts or masses is large. As this same limitation arises in the standard approach to the single-point progenitor distribution developed by Lacey & Cole (1993), we conclude that a more complete understanding of the progenitor distribution is the most important outstanding issue in the analytic modeling of Lagrangian bias.Comment: 22 pages, 8 figures, ApJ, in pres

    On the Spatial Correlations of Lyman Break Galaxies

    Full text link
    Motivated by the observed discrepancy between the strong spatial correlations of Lyman break galaxies (LBGs) and their velocity dispersions, we consider a theoretical model in which these starbursting galaxies are associated with dark matter halos that experience appreciable infall of material. We show using numerical simulation that selecting halos that substantially increase in mass within a fixed time interval introduces a ``temporal bias'' which boosts their clustering above that of the underlying population. If time intervals consistent with the observed LBGs star formation rates of 50 solar masses per year are chosen, then spatial correlations are enhanced by up to a factor of two. These values roughly correspond to the geometrical bias of objects three times as massive. Thus, it is clear that temporal biasing must be taken into account when interpreting the properties of Lyman break galaxies.Comment: 5 Pages, 2 Figures, Accepted for Publication in ApJ Letter

    Orthopedic management of the extremities in patients with Morquio A syndrome.

    Get PDF
    BackgroundMusculoskeletal involvement in Morquio A syndrome (mucopolysaccharidosis IVA; MPS IVA) contributes significantly to morbidity and mortality. While the spinal manifestations of the disorder have received considerable attention in the literature, there have been few reported studies to date to guide the management of the orthopedic problems associated with the lower and upper extremities.PurposeThe objective was to develop recommendations for the management of the extremities in patients with Morquio A syndrome.MethodsA group of specialists in orthopedics, pediatrics and genetics with experience in the management of Morquio A patients convened to review and discuss current clinical practices and to develop preliminary recommendations. Evidence from the literature was retrieved. Recommendations were further refined until consensus was reached.Results and conclusionsThis present article provides a detailed review and discussion of the lower and upper extremity deformities in Morquio A syndrome and presents recommendations for the assessment and treatment of these complications. Key issues, including the importance of early diagnosis and the implications of medical therapy, are also addressed. The recommendations herein represent an attempt to develop a uniform and practical approach to managing patients with Morquio A syndrome and improving their outcomes
    corecore