7,424 research outputs found
Commercialization of NESSUS: Status
A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine
Loop Representations of the Quark Determinant in Lattice QCD
The modelling of the ultraviolet contributions to the quark determinant in
lattice QCD in terms of a small number of Wilson loops is examined. Complete
Dirac spectra are obtained for sizeable ensembles of SU(3) gauge fields at
=5.7 on 6, 8, and 10 lattices allowing for the first time a
detailed study of the volume dependence of the effective loop action generating
the quark determinant. The connection to the hopping parameter expansion is
examined in the heavy quark limit. We compare the efficiency and accuracy of
various methods- specifically, Lanczos versus stochastic approaches- for
extracting the quark determinant on an ensemble of configurations.Comment: 20 pages, LaTe
Smoothed Particle Hydrodynamics in cosmology: a comparative study of implementations
We analyse the performance of twelve different implementations of Smoothed
Particle Hydrodynamics (SPH) using seven tests designed to isolate key
hydrodynamic elements of cosmological simulations which are known to cause the
SPH algorithm problems. In order, we consider a shock tube, spherical adiabatic
collapse, cooling flow model, drag, a cosmological simulation, rotating
cloud-collapse and disc stability. In the implementations special attention is
given to the way in which force symmetry is enforced in the equations of
motion. We study in detail how the hydrodynamics are affected by different
implementations of the artificial viscosity including those with a
shear-correction modification. We present an improved first-order
smoothing-length update algorithm that is designed to remove instabilities that
are present in the Hernquist and Katz (1989) algorithm.
For all tests we find that the artificial viscosity is the most important
factor distinguishing the results from the various implementations. The second
most important factor is the way force symmetry is achieved in the equation of
motion. Most results favour a kernel symmetrization approach. The exact method
by which SPH pressure forces are included has comparatively little effect on
the results. Combining the equation of motion presented in Thomas and Couchman
(1992) with a modification of the Monaghan and Gingold (1983) artificial
viscosity leads to an SPH scheme that is both fast and reliable.Comment: 30 pages, 26 figures and 9 tables included. Submitted to MNRAS.
Postscript version available at
ftp://phobos.astro.uwo.ca/pub/etittley/papers/sphtest.ps.g
Randomized sham controlled trial of cranial microcurrent stimulation for symptoms of depression, anxiety, pain, fatigue and sleep disturbances in women receiving chemotherapy for early-stage breast cancer
Purpose
Women with breast cancer may experience symptoms of depression, anxiety, pain, fatigue and sleep disturbances during chemotherapy. However, there are few modalities that address multiple, commonly occurring symptoms that may occur in individuals receiving cancer treatment. Cranial electrical stimulation (CES) is a treatment that is FDA cleared for depression, anxiety and insomnia. CES is applied via electrodes placed on the ear that deliver pulsed, low amplitude electrical current to the head. Methods
This phase III randomized, sham-controlled study aimed to examine the effects of cranial microcurrent stimulation on symptoms of depression, anxiety, pain, fatigue, and sleep disturbances in women receiving chemotherapy for early-stage breast cancer. Patients were randomly assigned to either an actual or sham device and used the device daily for 1 h. The study was registered at clinicaltrials.gov, NCT00902330. Results
The sample included N = 167 women with early-stage breast cancer. Symptom severity of depression, anxiety, and fatigue and sleep disturbances were generally mild to moderate. Levels of pain were low. Anxiety was highest prior to the initial chemotherapy and decreased over time. The primary outcome assessment (symptoms of depression, anxiety, fatigue, pain, sleep disturbances) revealed no statistically significant differences between the two groups, actual CES vs. sham. Conclusion
In this study, women receiving chemotherapy for breast cancer experienced multiple symptoms in the mild to moderate range. Although there is no evidence for the routine use of CES during the chemotherapy period for symptom management in women with breast cancer, further symptom management modalities should be evaluated to mitigate symptoms of depression, anxiety, fatigue, pain and sleep disturbances over the course of chemotherapy
Toward an Improved Analytical Description of Lagrangian Bias
We carry out a detailed numerical investigation of the spatial correlation
function of the initial positions of cosmological dark matter halos. In this
Lagrangian coordinate system, which is especially useful for analytic studies
of cosmological feedback, we are able to construct cross-correlation functions
of objects with varying masses and formation redshifts and compare them with a
variety of analytical approaches. For the case in which both formation
redshifts are equal, we find good agreement between our numerical results and
the bivariate model of Scannapieco & Barkana (2002; SB02) at all masses,
redshifts, and separations, while the model of Porciani et al. (1998) does well
for all parameters except for objects with different masses at small
separations. We find that the standard mapping between Lagrangian and Eulerian
bias performs well for rare objects at all separations, but fails if the
objects are highly-nonlinear (low-sigma) peaks. In the Lagrangian case in which
the formation redshifts differ, the SB02 model does well for all separations
and combinations of masses, apart from a discrepancy at small separations in
situations in which the smaller object is formed earlier and the difference
between redshifts or masses is large. As this same limitation arises in the
standard approach to the single-point progenitor distribution developed by
Lacey & Cole (1993), we conclude that a more complete understanding of the
progenitor distribution is the most important outstanding issue in the analytic
modeling of Lagrangian bias.Comment: 22 pages, 8 figures, ApJ, in pres
On the Spatial Correlations of Lyman Break Galaxies
Motivated by the observed discrepancy between the strong spatial correlations
of Lyman break galaxies (LBGs) and their velocity dispersions, we consider a
theoretical model in which these starbursting galaxies are associated with dark
matter halos that experience appreciable infall of material. We show using
numerical simulation that selecting halos that substantially increase in mass
within a fixed time interval introduces a ``temporal bias'' which boosts their
clustering above that of the underlying population. If time intervals
consistent with the observed LBGs star formation rates of 50 solar masses per
year are chosen, then spatial correlations are enhanced by up to a factor of
two. These values roughly correspond to the geometrical bias of objects three
times as massive. Thus, it is clear that temporal biasing must be taken into
account when interpreting the properties of Lyman break galaxies.Comment: 5 Pages, 2 Figures, Accepted for Publication in ApJ Letter
Orthopedic management of the extremities in patients with Morquio A syndrome.
BackgroundMusculoskeletal involvement in Morquio A syndrome (mucopolysaccharidosis IVA; MPS IVA) contributes significantly to morbidity and mortality. While the spinal manifestations of the disorder have received considerable attention in the literature, there have been few reported studies to date to guide the management of the orthopedic problems associated with the lower and upper extremities.PurposeThe objective was to develop recommendations for the management of the extremities in patients with Morquio A syndrome.MethodsA group of specialists in orthopedics, pediatrics and genetics with experience in the management of Morquio A patients convened to review and discuss current clinical practices and to develop preliminary recommendations. Evidence from the literature was retrieved. Recommendations were further refined until consensus was reached.Results and conclusionsThis present article provides a detailed review and discussion of the lower and upper extremity deformities in Morquio A syndrome and presents recommendations for the assessment and treatment of these complications. Key issues, including the importance of early diagnosis and the implications of medical therapy, are also addressed. The recommendations herein represent an attempt to develop a uniform and practical approach to managing patients with Morquio A syndrome and improving their outcomes
- …
