590 research outputs found

    A CANDELS WFC3 Grism Study of Emission-Line Galaxies at z ~ 2: A Mix of Nuclear Activity and Low-Metallicity Star Formation

    Get PDF
    We present Hubble Space Telescope Wide Field Camera 3 (WFC3) slitless grism spectroscopy of 28 emission-line galaxies at z ~ 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. The high sensitivity of these grism observations, with >1σ detections of emission lines to f > 2.5 × 10^(–18) erg s^(–1) cm^(–2), means that the galaxies in the sample are typically ~7 times less massive (median M_* = 10^(9.5) M_☉) than previously studied z ~ 2 emission-line galaxies. Despite their lower mass, the galaxies have [O III]/Hβ ratios which are very similar to previously studied z ~ 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O III] emission line is more spatially concentrated than the Hβ emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L_([O III])/L_(0.5-10keV) ratio is intermediate between typical z ~ 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei

    Possible Implications of Asymmetric Fermionic Dark Matter for Neutron Stars

    Get PDF
    We consider the implications of fermionic asymmetric dark matter for a "mixed neutron star" composed of ordinary baryons and dark fermions. We find examples, where for a certain range of dark fermion mass -- when it is less than that of ordinary baryons -- such systems can reach higher masses than the maximal values allowed for ordinary ("pure") neutron stars. This is shown both within a simplified, heuristic Newtonian analytic framework with non-interacting particles and via a general relativistic numerical calculation, under certain assumptions for the dark matter equation of state. Our work applies to various dark fermion models such as mirror matter models and to other models where the dark fermions have self interactions.Comment: 20 pages, 6 figure

    Galaxy Morphology from NICMOS Parallel Imaging

    Get PDF
    We present high resolution NICMOS images of random fields obtained in parallel to other HST observations. We present galaxy number counts reaching H=24. The H-band galaxy counts show good agreement with the deepest I- and K-band counts obtained from ground-based data. We present the distribution of galaxies with morphological type to H<23. We find relatively fewer irregular galaxies compared to an I-band sample from the Hubble Deep Field, which we attribute to their blue color, rather than to morphological K-corrections. We conclude that the irregulars are intrinsically faint blue galaxies at z<1.Comment: 13 pages, including 4 figures. Accepted for publication in ApJ Letter

    Emission Line Galaxies in the STIS Parallel Survey II: Star Formation Density

    Get PDF
    We present the luminosity function of [OII]-emitting galaxies at a median redshift of z=0.9, as measured in the deep spectroscopic data in the STIS Parallel Survey (SPS). The luminosity function shows strong evolution from the local value, as expected. By using random lines of sight, the SPS measurement complements previous deep single field studies. We calculate the density of inferred star formation at this redshift by converting from [OII] to H-alpha line flux as a function of absolute magnitude and find rho_dot=0.043 +/- 0.014 Msun/yr/Mpc^3 at a median redshift z~0.9 within the range 0.46<z<1.415 (H_0 = 70 km/s/Mpc, Omega_M=0.3, Omega_Lambda=0.7. This density is consistent with a (1+z)^4 evolution in global star formation since z~1. To reconcile the density with similar measurements made by surveys targeting H-alpha may require substantial extinction correction.Comment: 16 preprint pages including 5 figures; accepted for publication in Ap

    The Hubble Space Telescope GOODS NICMOS Survey: overview and the evolution of massive galaxies at 1.5 < z < 3

    Get PDF
    We present the details and early results from a deep near-infrared survey utilizing the NICMOS instrument on the Hubble Space Telescope centred around massive M_* > 10^(11) M_⊙ galaxies at 1.7 10^(11) M_⊙, whereby we find an increase of a factor of 8 between z= 3 and 1.5, demonstrating that this is an epoch when massive galaxies establish most of their stellar mass. We also provide an overview of the evolutionary properties of these galaxies, such as their merger histories, and size evolution

    The WFC3 Infrared Spectroscopic Parallel (WISP) Survey

    Get PDF
    We present the WFC3 Infrared Spectroscopic Parallel (WISP) Survey. WISP is obtaining slitless, near-infrared grism spectroscopy of ~ 90 independent, high-latitude fields by observing in the pure parallel mode with Wide Field Camera-3 on the Hubble Space Telescope for a total of ~ 250 orbits. Spectra are obtained with the G102 (lambda=0.8-1.17 microns, R ~ 210) and G141 grisms (lambda=1.11-1.67 microns, R ~ 130), together with direct imaging in the J- and H-bands (F110W and F140W, respectively). In the present paper, we present the first results from 19 WISP fields, covering approximately 63 square arc minutes. For typical exposure times (~ 6400 sec in G102 and ~ 2700 sec in G141), we reach 5-sigma detection limits for emission lines of 5 x 10^(-17) ergs s^(-1) cm^(-2) for compact objects. Typical direct imaging 5sigma-limits are 26.8 and 25.0 magnitudes (AB) in F110W and F140W, respectively. Restricting ourselves to the lines measured with highest confidence, we present a list of 328 emission lines, in 229 objects, in a redshift range 0.3 < z < 3. The single-line emitters are likely to be a mix of Halpha and [OIII]5007,4959 A, with Halpha predominating. The overall surface density of high-confidence emission-line objects in our sample is approximately 4 per arcmin^(2).These first fields show high equivalent width sources, AGN, and post starburst galaxies. The median observed star formation rate of our Halpha selected sample is 4 Msol/year. At intermediate redshifts, we detect emission lines in galaxies as faint as H_140 ~ 25, or M_R < -19, and are sensitive to star formation rates down to less than 1 Msol/year. The slitless grisms on WFC3 provide a unique opportunity to study the spectral properties of galaxies much fainter than L* at the peak of the galaxy assembly epoch.Comment: 15 pages, 12 figures, submitted to Ap

    IRAC Excess in Distant Star-Forming Galaxies: Tentative Evidence for the 3.3μ\mum Polycyclic Aromatic Hydrocarbon Feature ?

    Get PDF
    We present evidence for the existence of an IRAC excess in the spectral energy distribution (SED) of 5 galaxies at 0.6<z<0.9 and 1 galaxy at z=1.7. These 6 galaxies, located in the Great Observatories Origins Deep Survey field (GOODS-N), are star forming since they present strong 6.2, 7.7, and 11.3 um polycyclic aromatic hydrocarbon (PAH) lines in their Spitzer IRS mid-infrared spectra. We use a library of templates computed with PEGASE.2 to fit their multiwavelength photometry and derive their stellar continuum. Subtraction of the stellar continuum enables us to detect in 5 galaxies a significant excess in the IRAC band pass where the 3.3 um PAH is expected. We then assess if the physical origin of the IRAC excess is due to an obscured active galactic nucleus (AGN) or warm dust emission. For one galaxy evidence of an obscured AGN is found, while the remaining four do not exhibit any significant AGN activity. Possible contamination by warm dust continuum of unknown origin as found in the Galactic diffuse emission is discussed. The properties of such a continuum would have to be different from the local Universe to explain the measured IRAC excess, but we cannot definitively rule out this possibility until its origin is understood. Assuming that the IRAC excess is dominated by the 3.3 um PAH feature, we find good agreement with the observed 11.3 um PAH line flux arising from the same C-H bending and stretching modes, consistent with model expectations. Finally, the IRAC excess appears to be correlated with the star-formation rate in the galaxies. Hence it could provide a powerful diagnostic for measuring dusty star formation in z>3 galaxies once the mid-infrared spectroscopic capabilities of the James Webb Space Telescope become available.Comment: 25 pages, 4 figures, accepted by Ap
    • …
    corecore