579 research outputs found

    Notes on the migration and dispersal of birds at Kitui

    Get PDF
    Volume: XXI

    The strong influence of substrate conductivity on droplet evaporation

    Get PDF
    We report the results of physical experiments that demonstrate the strong influence of the thermal conductivity of the substrate on the evaporation of a pinned droplet. We show that this behaviour can be captured by a mathematical model including the variation of the saturation concentration with temperature, and hence coupling the problems for the vapour concentration in the atmosphere and the temperature in the liquid and the substrate. Furthermore, we show that including two ad hoc improvements to the model, namely a Newton's law of cooling on the unwetted surface of the substrate and the buoyancy of water vapour in the atmosphere, give excellent quantitative agreement for all of the combinations of liquid and substrate considered

    Constraints on the Ultra High Energy Photon flux using inclined showers from the Haverah Park array

    Full text link
    We describe a method to analyse inclined air showers produced by ultra high energy cosmic rays using an analytical description of the muon densities. We report the results obtained using data from inclined events (60^{\circ}<\theta<80^{\circ}) recorded by the Haverah Park shower detector for energies above 10^19 eV. Using mass independent knowledge of the UHECR spectrum obtained from vertical air shower measurements and comparing the expected horizontal shower rate to the reported measurements we show that above 10^19 eV less than 48 % of the primary cosmic rays can be photons at the 95 % confidence level and above 4 X 10^19 eV less than 50 % of the cosmic rays can be photonic at the same confidence level. These limits place important constraints on some models of the origin of ultra high-energy cosmic rays.Comment: 45 pages, 25 figure

    Neutrino Detection with Inclined Air Showers

    Full text link
    The possibilities of detecting high energy neutrinos through inclined showers produced in the atmosphere are addressed with an emphasis on the detection of air showers by arrays of particle detectors. Rates of inclined showers produced by both down-going neutrino interactions and by up-coming τ\tau decays from earth-skimming neutrinos as a function of shower energy are calculated with analytical methods using two sample neutrino fluxes with different spectral indices. The relative contributions from different flavors and charged, neutral current and resonant interactions are compared for down-going neutrinos interacting in the atmosphere. No detailed description of detectors is attempted but rough energy thresholds are implemented to establish the ranges of energies which are more suitable for neutrino detection through inclined showers. Down-going and up-coming rates are compared.Comment: Submitted to New Journal of Physic

    Parametricity and Local Variables

    Get PDF
    We propose that the phenomenon of local state may be understood in terms of Strachey\u27s concept of parametric (i.e., uniform) polymorphism. The intuitive basis for our proposal is the following analogy: a non-local procedure is independent of locally-declared variables in the same way that a parametrically polymorphic function is independent of types to which it is instantiated. A connection between parametricity and representational abstraction was first suggested by J. C. Reynolds. Reynolds used logical relations to formalize this connection in languages with type variables and user-defined types. We use relational parametricity to construct a model for an Algol-like language in which interactions between local and non-local entities satisfy certain relational criteria. Reasoning about local variables essentially involves proving properties of polymorphic functions. The new model supports straightforward validations of all the test equivalences that have been proposed in the literature for local-variable semantics, and encompasses standard methods of reasoning about data representations. It is not known whether our techniques yield fully abstract semantics. A model based on partial equivalence relations on the natural numbers is also briefly examined

    An Economic Evaluation of Onshore and Floating Liquefied Natural Gas Receiving Terminals:The Case Study of Indonesia

    Get PDF
    Indonesia has abundant natural gas resources, however the primary fuel used for electricity generation is coal and oil. Insufficient natural gas infrastructure with-in the country acts as a barrier to increased natural gas usage. In Indonesia LNG is the most efficient and effective method for distributing natural gas given the difficult geographical conditions, the world's largest archipelago and located in a deep sea area. The Government is planning to initiate natural gas imports by 2019 to meet the country's energy demands. In order to allocate adequate amounts of natural gas across the geographic regions Indonesia must build more LNG regasification terminals. The Indonesia government has not yet determined if the additional regasification terminals will be floating or land-based facilities. This paper assesses the two options and identifies which facility attains greater profitability. The financial analysis of investing in the Sorong LNG regasification terminal project is conducted using NPV, IRR, and sensitivity analysis. This analysis demonstrates that FSRU facilities have greater economic viability than onshore LNG regasification facilities. The FSRU project earns greater than a 12% IRR as compared to a negative IRR earned by an onshore project. The government can make the onshore projects viable by increasing the sales fee from US10.00/MMBTUtoUS10.00/MMBTU to US10.60/MMBTU.</p

    Augmented analyses: supporting the study of ubiquitous computing systems

    Get PDF
    Ubiquitous computing is becoming an increasingly prevalent part of our everyday lives. The reliance of society upon such devices as mobile phones, coupled with the increasing complexity of those devices is an example of how our everyday human-human interaction is affected by this phenomenon. Social scientists studying human-human interaction must now take into account the effects of these technologies not just on the interaction itself, but also on the approach required to study it. User evaluation is a challenging topic in ubiquitous computing. It is generally considered to be difficult, certainly more so than in previous computational settings. Heterogeneity in design, distributed and mobile users, invisible sensing systems and so on, all add up to render traditional methods of observation and evaluation insufficient to construct a complete view of interactional activity. These challenges necessitate the development of new observational technologies. This thesis explores some of those challenges and demonstrates that system logs, with suitable methods of synchronising, filtering and visualising them for use in conjunction with more traditional observational approaches such as video, can be used to overcome many of these issues. Through a review of both the literature of the field, and the state of the art of computer aided qualitative data analysis software (CAQDAS), a series of guidelines are constructed showing what would be required of a software toolkit to meet the challenges of studying ubiquitous computing systems. It outlines the design and implementation of two such software packages, \textit{Replayer} and \textit{Digital Replay System}, which approach the problem from different angles, the former being focussed on visualising and exploring the data in system logs and the latter focussing on supporting the methods used by social scientists to perform qualitative analyses. The thesis shows through case studies how this technique can be applied to add significant value to the qualitative analysis of ubiquitous computing systems: how the coordination of system logs and other media can help us find information in the data that would otherwise be inaccessible; an ability to perform studies in locations/settings that would otherwise be impossible, or at least very difficult; and how creating accessible qualitative data analysis tools allows people to study particular settings or technologies who could not have studied them before. This software aims to demonstrate the direction in which other CAQDAS packages may have to move in order to support the study of the characteristics of human-computer and human-human interaction in a world increasingly reliant upon ubiquitous computing technology

    Diagnostic accuracy of magnetic resonance enterography and small bowel ultrasound for the extent and activity of newly diagnosed and relapsed Crohn's disease (METRIC): a multicentre trial

    Get PDF
    Magnetic resonance enterography (MRE) and ultrasound are used to image Crohn's disease, but their comparative accuracy for assessing disease extent and activity is not known with certainty. Therefore, we did a multicentre trial to address this issue. We recruited patients from eight UK hospitals. Eligible patients were 16 years or older, with newly diagnosed Crohn's disease or with established disease and suspected relapse. Consecutive patients had MRE and ultrasound in addition to standard investigations. Discrepancy between MRE and ultrasound for the presence of small bowel disease triggered an additional investigation, if not already available. The primary outcome was difference in per-patient sensitivity for small bowel disease extent (correct identification and segmental localisation) against a construct reference standard (panel diagnosis). This trial is registered with the International Standard Randomised Controlled Trial, number ISRCTN03982913, and has been completed. 284 patients completed the trial (133 in the newly diagnosed group, 151 in the relapse group). Based on the reference standard, 233 (82%) patients had small bowel Crohn's disease. The sensitivity of MRE for small bowel disease extent (80% [95% CI 72-86]) and presence (97% [91-99]) were significantly greater than that of ultrasound (70% [62-78] for disease extent, 92% [84-96] for disease presence); a 10% (95% CI 1-18; p=0·027) difference for extent, and 5% (1-9; p=0·025) difference for presence. The specificity of MRE for small bowel disease extent (95% [85-98]) was significantly greater than that of ultrasound (81% [64-91]); a difference of 14% (1-27; p=0·039). The specificity for small bowel disease presence was 96% (95% CI 86-99) with MRE and 84% (65-94) with ultrasound (difference 12% [0-25]; p=0·054). There were no serious adverse events. Both MRE and ultrasound have high sensitivity for detecting small bowel disease presence and both are valid first-line investigations, and viable alternatives to ileocolonoscopy. However, in a national health service setting, MRE is generally the preferred radiological investigation when available because its sensitivity and specificity exceed ultrasound significantly. National Institute of Health and Research Health Technology Assessment. [Abstract copyright: Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

    Syntactic Control of Interference Revisited

    Get PDF
    In Syntactic Control of Interference (POPL, 1978), J. C. Reynolds proposes three design principles intended to constrain the scope of imperative state effects in Algol-like languages. The resulting linguistic framework seems to be a very satisfactory way of combining functional and imperative concepts, having the desirable attributes of both purely functional languages (such as pcf) and simple imperative languages (such as the language of while programs). However, Reynolds points out that the obvious syntax for interference control has the unfortunate property that fi-reductions do not always preserve typings. Reynolds has subsequently presented a solution to this problem (ICALP, 1989), but it is fairly complicated and requires intersection types in the type system. Here, we present a much simpler solution which does not require intersection types. We first describe a new type system inspired in part by linear logic and verify that reductions preserve typings. We then define a class of bireflective models, which provide a categorical analysis of structure underlying the new typing rules; a companion paper Bireflectivity, in this volume, exposes wider ramifications of this structure. Finally, we describe a concrete model for an illustrative programming language based on the new type system; this improves on earlier such efforts in that states are not assumed to be structured using locations
    corecore